How Energy Codes are Changing the Shape of Architecture

Which one of you pigs lives here?

ENGINEERING

Do we look crazy enough to build a glass house? Do you know what their energy bills must be?

Brian Lomel, PE LEED AP BD+C, CxA, Sr. Sustainability Consultant AABC Commissioning Group AIA Provider Number: 50111116

How Energy Codes are Changing the Shape of Architecture

Course Number: CXENERGY1517

Brian Lomel, PE, LEED AP, CxA, TLC Engineering for Architecture

April 29, 2015

Credit(s) earned on completion of this course will be reported to AIA CES for AIA members. Certificates of Completion for both AIA members and non-AIA members are available upon request. for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product.

Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

This course is registered with AIA CES

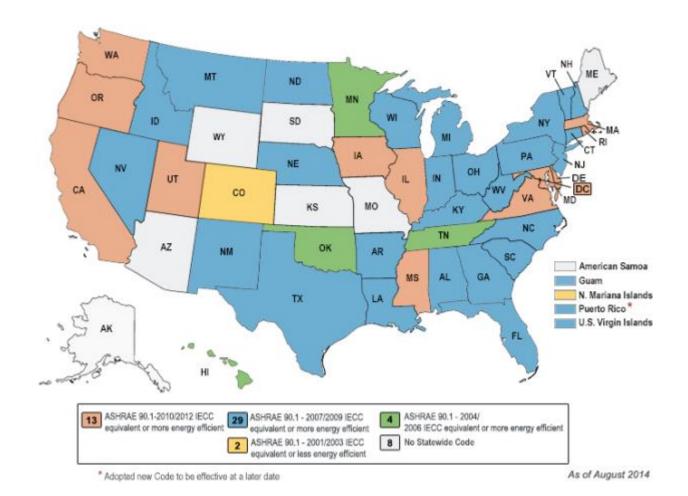
Copyright Materials

This presentation is protected by US and International Copyright laws. Reproduction, distribution, display and use of the presentation without written permission of the speaker is prohibited.

© TLC Engineering for Architecture 2015

Course Description

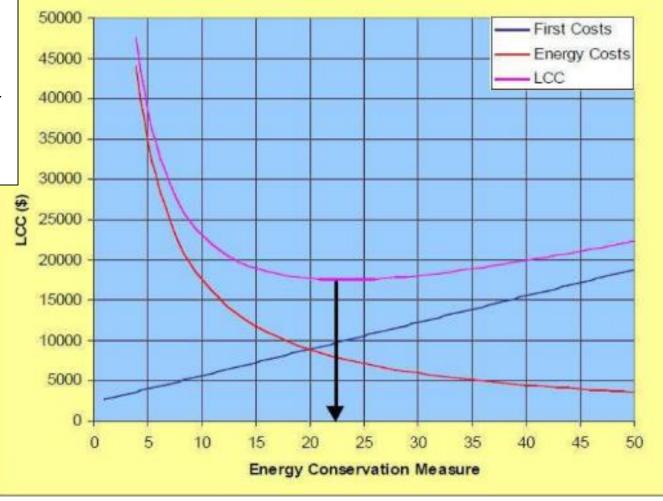
This session provides an overview of how the new Energy Codes, specifically IECC 2012 and ASHRAE 90.1 2010, are impacting the architecture, performance, and operation of buildings. The new codes represent the biggest increase in building energy performance requirements ever, and will change the way buildings are designed, constructed, and commissioned. The session will review the new energy codes' prescriptive and performance compliance paths, mandatory requirements, when they are applicable, and how to implement on projects.


Learning Objectives

At the end of the this course, participants will be able to:

- Learn how energy codes and standards IECC 2012 and ASHRAE 90.1 2010 are impacting the architecture, performance, and operation of buildings.
- 2. Understand why IECC 2012 and ASHRAE 90.1 2010 represent the biggest increase in building energy performance requirements ever, and will change the way buildings are designed, constructed, and commissioned.
- 3. Learn about IECC 2012 and ASHRAE 90.1 2010 prescriptive and performance compliance paths, mandatory requirements, when they are applicable.
- 4. Understand how to implement the provisions of IECC 2012 and ASHRAE 90.1 2010 on projects.

Commercial energy code adoptions

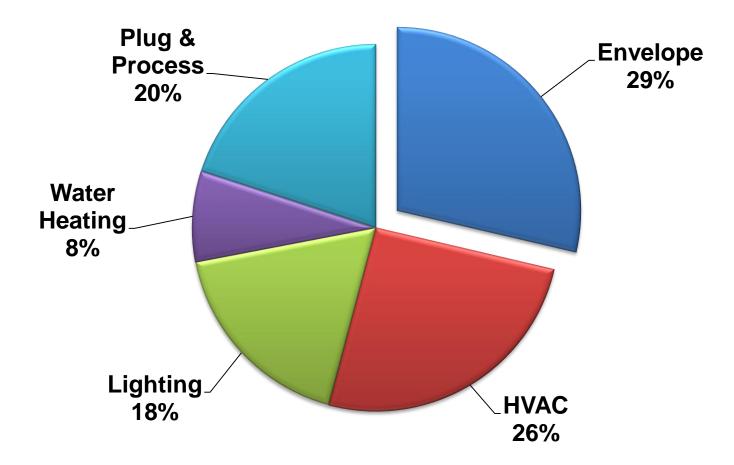


How do they determine what is reasonable?

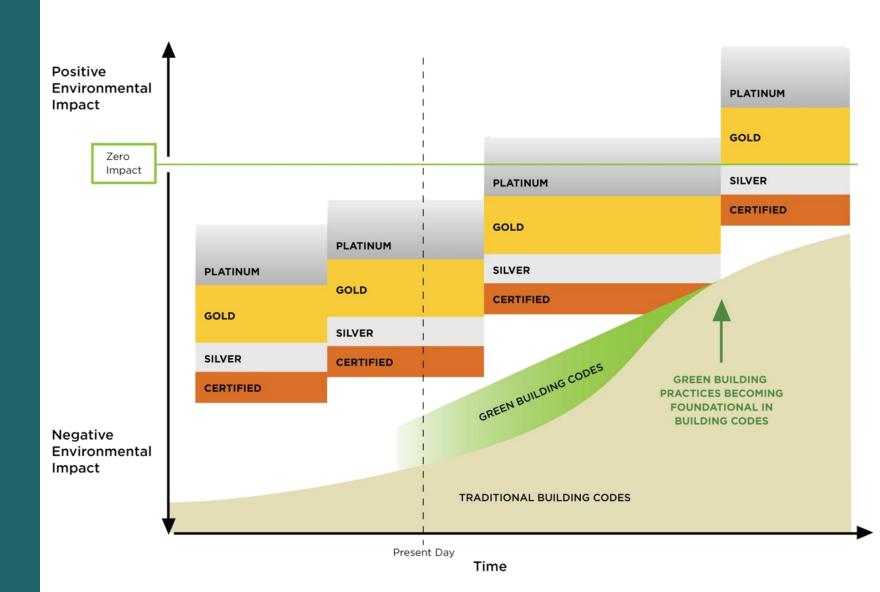
ASHRAE 90.1-2010 optimizes Life Cycle Costs under these assumptions:

- Fuel prices
 - Electricity \$0.094/kWh
 - Gas \$1.22/therm
- Projection assumptions
 - Cost escalation 3.7%/yr
 - State tax rates 5%
 - Discount rate 7%
 - Interest rate 7%

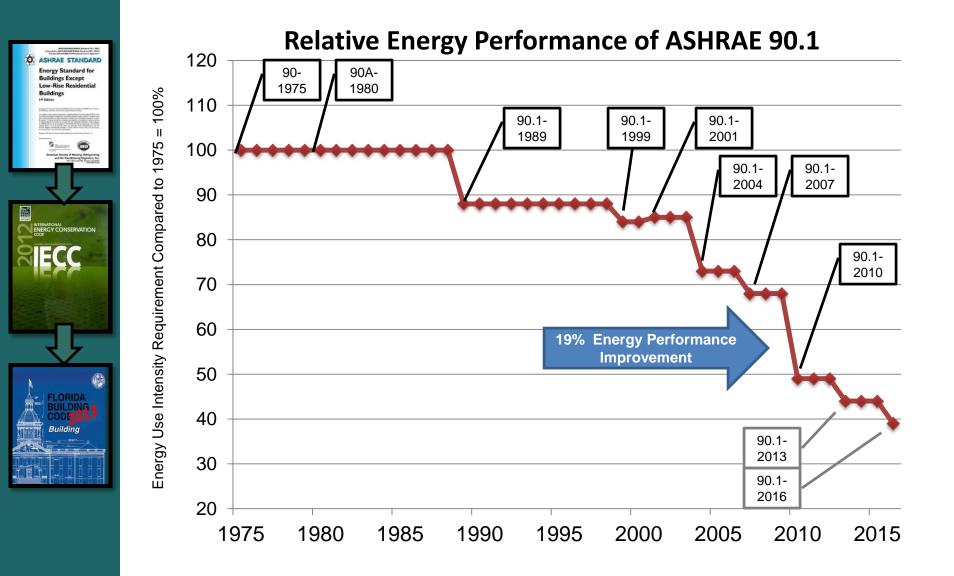
Life Cycle Cost (LCC) Optimization



BUILDINGS USE A LOT OF ENERGY


Energy Efficiency Starts with the Envelope

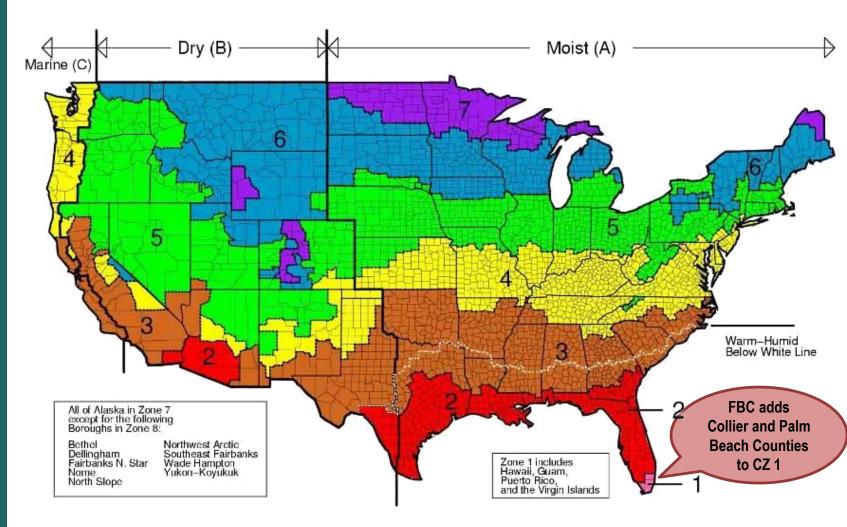
Energy Impact on US Commercial Buildings



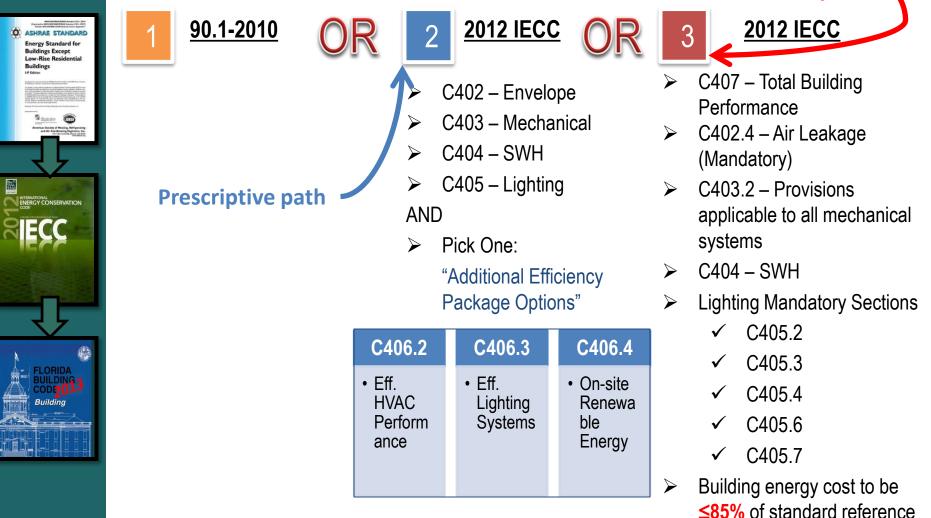
Sources: Department of Energy (DOE), Energy Information Administration, 2003 Commercial Buildings Energy Consumption Survey, Data for all existing buildings, all climate zones: Old Bldgs, Leaky Bldgs, no Energy Code, etc.

Sustainability Impact on Building Codes

ASHRAE 90.1 Over Time IECC 2012 Based on ASHRAE 90.1 2010


UNDERSTANDING THE NEW CODE

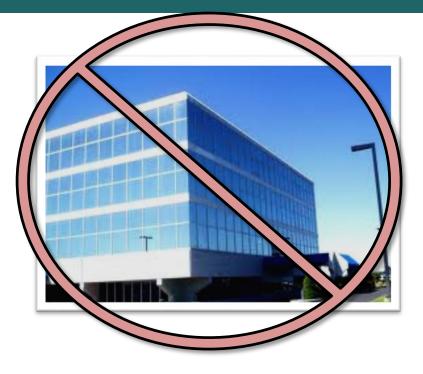
- Overall scope and compliance paths
 - Prescriptive Path
 - Performance Path
 - Mandatory Requirements
- Major Changes to Building Envelope Requirements


FBC 2013 goes into effect June 2015

Where in the World Are We: Climate Zones, 2012 IECC Chapter 3

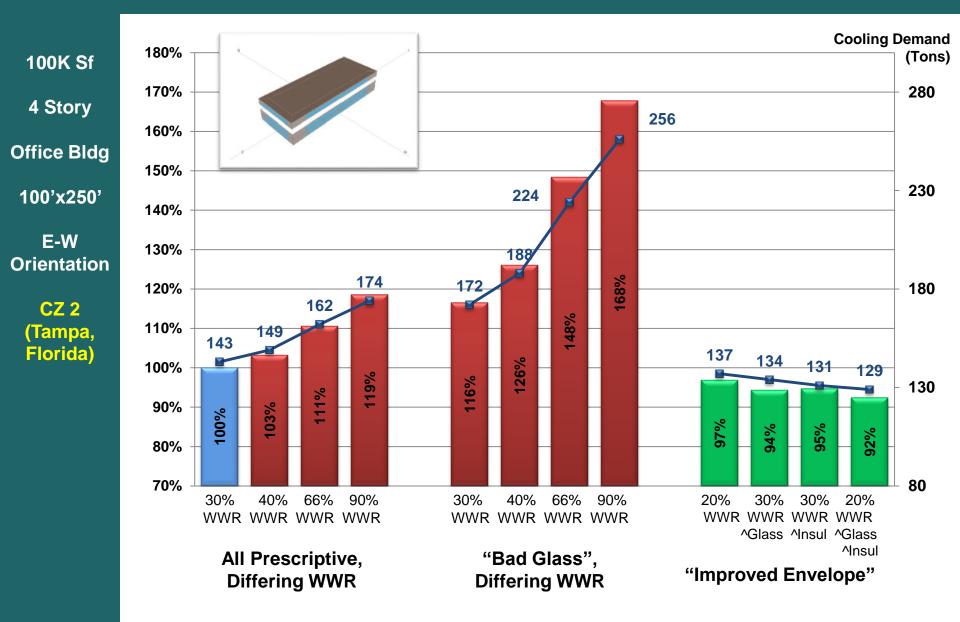
Determining Your Climate Zone is the First Step in the Process

Commercial Compliance Options

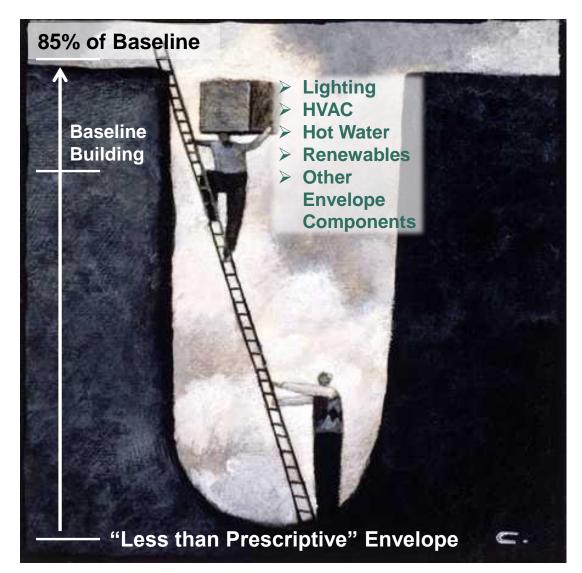

design building

Performance path

Envelope Requirement Changes?


Key changes from IECC 2009 / FBC 2010

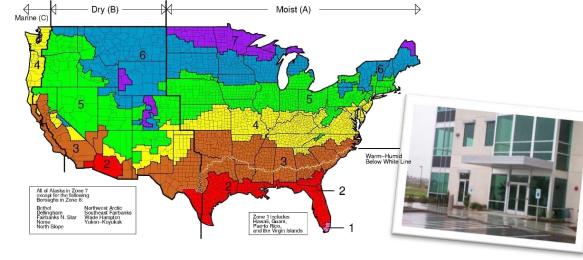
- Almost all the opaque envelope components are more stringent
- Simplified fenestration table
- Skylight <u>requirement</u> in certain spaces
- WWR now capped at 30%, with an allowance up to 40% if substantial daylighting is used
- Daylighting Controls now required (so no extra credit for them anymore)



Impact of Envelope on Energy Performance

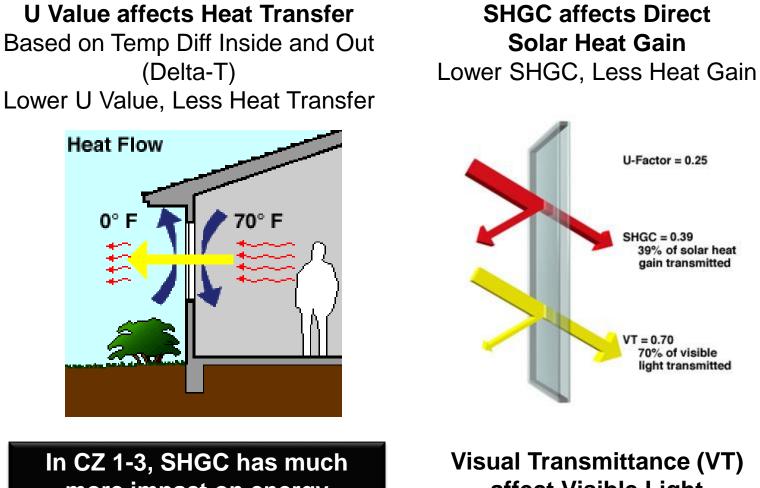
Impact of Envelope on Energy Performance

Starting with an envelope that does not meet the prescriptive requirements is like climbing out of an energy hole.


PRESCRIPTIVE REQUIREMENTS

Glazed Fenestration SHGC

What is Solar Heat Gain Coefficient and Why is it Critical in Climate Zones 1, 2, & 3?



"The ratio of the solar heat gain entering the space through the fenestration assembly to the incident solar radiation."

(the lower the SHGC, the better the glass)

Understanding U Value, SHGC, VT

more impact on energy performance than U Value Visual Transmittance (VT) affect Visible Light Higher VT, more light gets thru

Prescriptive Approach Compliance: Walls/Roofs/Slabs/Doors C402.2

Table C402.2 Excerpts	Climate Zone 1
Roofs: Insulated Above Deck	R-20ci
Walls Above Grade: Mass Walls	R-5.7ci
Walls Above Grade: Metal Framed	R-13+ R-5 ci
Walls Below Grade	NR
Floors: Mass Floors	NR
Slab On Grade: Unheated	NR
Opaque Doors: Swinging	U-0.61

CLIMATE	1		2		3	4 EX MAR		5 AND M	ARINE 4	6		7	,	8	8	
ZONE	All Other	Group R	All Other	Group R	All Other	Group R	All Other	Group R	All Other	Group R						
							R	oofs								
Insulation entirely above deck	R-20ci	R-20ci	R-20ci	R-20ci	R-20ci	R-20ci	R-25ci	R-25ci	R-25ci	R-25ci	R-30ci	R-30ci	R-35ci	R-35ci	R-35ci	R-35ci
Metal buildings (with R-5 thermal blocks) ^{a, b}	R-19 + R-11 LS	R-19 + R-11 LS	R-19 + R11 LS	R-19 + R-11 LS	R-19 + R-11 LS	R-19 + R-11 LS	R-19 + R-11 LS	R-19 + R-11 LS	R-19 + R-11 LS	R-19 + R-11 LS	R-25 + R-11 LS	R-25 + R-11 LS	R-30 + R-11 LS	R-30 + R-11 LS	R-30 + R-11 LS	R-30 + R-11 LS
Attic and other	R-38	R-49	R-49	R-49	R-49	R-49	R-49	R-49								
							Walls, Al	oove Grad	e							
Mass	R-5.7ci	R-5.7ci	R-5.7ci	R-7.6ci	R-7.6ci	R-9.5ci	R-9.5ci	R-11.4ci	R-11.4ci	R-13.3ci	R-13.3ci	R-15.2ci	R-15.2ci	R-15.2ci	R-25ci	R-25ci
Metal building	R-13+ R-6.5ci	R-13 + R-6.5ci	R13 + R-6.5ci	R-13 + R-13ci	R-13 + R-6.5ci	R-13 + R-13ci	R-13+ R-13ci	R-13 + R-13ci	R-13 + R-13ci	R-13+ R-19.5ci	R-13 + R-13ci	R-13+ R-19.5d				
Metal framed	R-13 + R-5ci	R-13 + R-5ci	R-13 + R-5ci	R-13 + R-7.5ci	R-13 + R-7.5ci	R-13 + R-7.5ci	R-13 + R-7.5ci	R-13 + R-15.6ci	R-13 + R-7.5ci	R-13+ R17.5ci						
Wood framed and other	R-13 + R-3.8ci or R-20	R-13 + R-7.5ci or R-20 + R-3.8ci	R-13 + R-15.6ci or R-20 + R-10ci	R-13 + R-15.6ci or R-20 + R-10ci												
			_				Walls, Be	low Grad	e							
Below-grade wall ^d	NR	NR	NR	NR	NR	NR	R-7.5ci	R-7.5ci	R-7.5ci	R-7.5ci	R-7.5ci	R-7.5ci	R-10ci	R-10ci	R-10ci	R-12.5ci
							Fle	ors								
Mass	NR	NR	R-6.3ci	R-8.3ci	R-10ci	R-10ci	R-10ci	R-10.4ci	R-10ci	R-12.5ci	R-12.5ci	R-12.5ci	R-15ci	R-16.7ci	R-15ci	R-16.7ci
Joist/framing	NR	NR	R-30	R-30	R-30 ^e	R-30 ^e	R-30 ^e	R-30 ^e	R-30 ^e							
							Slab-on-G	rade Floo	ITS .							
Unheated slabs	NR	NR	NR	NR	NR	NR	R-10 for 24 below	R-10 for 24 below	R-10 for 24 below	R-10 for 24 below		R-15 for 24 below	R-15 for 24 below	R-15 for 24 below	R-15 for 24 below	R-20 for 24 below
Heated slabs ^d	R-7.5 for 12 below	R-7.5 for 12 below	R-7.5 for 12 below	R-7.5 for 12 below	R-10 for 24 below	R-10 for 24 below	R-15 for 24 below	R-15 for 24 below	R-15 for 36 below	R-15 for 36 below	R-15 for 36 below	R-20 for 48 below	R-20 for 24 below	R-20 for 48 below	R-20 for 48 below	R-20 for 48 below
								e Doors					_			
Swinging	U-0.61	U-0.37	U-0.37	U-0.37	U-0.37	U-0.37	U-0.37	U-0.37	U-0.37							
Roll-up or sliding	R-4.75	R-4.75	R-4.75	R-4.75	R-4.75	R-4.75	R-4.75									

Prescriptive Requirements for Opaque Thermal Envelope

- ✓ Roofs
- ✓ Walls Above Grade
- ✓ Walls Below Grade
- ✓ Floors
- ✓ Slab on Grade
- ✓ Opaque Doors

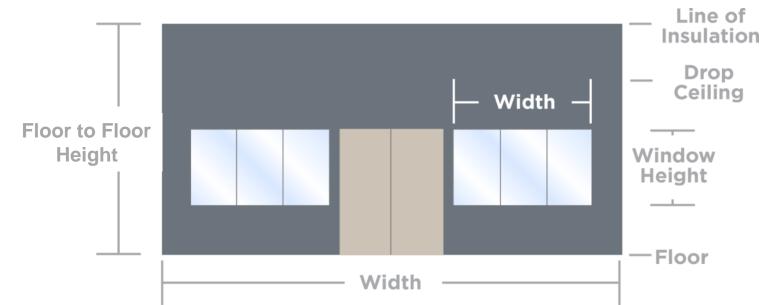
Prescriptive Approach Compliance: Fenestration C402.3

Was 1.20	_				Math U Value Lower U Va		R Valu	-
TABLE C402.3 BUILDING ENVELOPE REQUIREMENTS: FENESTRATION								
CLIMATE ZONE		2	3	4 EXCEPT MARINE	5 AND MARINE 4	6	7	8
			Vertica	al fenestration	1	•		
U-factor								
Fixed fenestration	0.50	0.5	0 0.46	0.38	0.38	0.36	0.29	0.29
Operable fenestration	0.65	0.6	5 0.60	0.45	0.45	0.43	0.37	0.37
Entrance doors	1.10	U. 5	3 0.77	0.77	0.77	0.77	0.77	0.77
SHGC				•	·		-	
SHGC	0.25	0.1	5 0.25	0.40	0.40	0.40	0.45	0.45
				Skylights	·	•	•	
U-factor	0.75	0.6	5 0.55	0.50	0.50	0.50	0.50	0.50
SHGC	0.35	0.3	5 0.35	0.40	0.40	0.40	NR	NR

NR = No requirement.

Table C402.3 requirements by these categories:

- ✓ Fixed fenestration
- ✓ Operable fenestration
- ✓ Entrance doors


Prescriptive Vertical Fenestration Requirement C402.3.1

Based on above-grade wall area (gross)

- Includes walls between conditioned space and unconditioned space or the great outdoors
- Includes walls that are > 15% above grade

Total fenestration area (includes frame and glazing)

 Does not include opaque door area

Prescriptive Vertical Fenestration Requirement C402.3.1

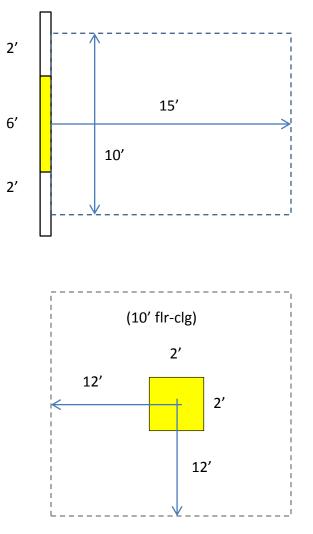
How Much Glass Can I Use ?

Percentage of Vertical Fenestration Area to Gross Wall Area

- Allowed up to 30%
 maximum of above grade wall
- In Climate Zones 1-6, up to 40% maximum of above grade wall with daylighting controls

Baptist Medical Center Jacksonville, South Tower D Gresham Smith & Partners

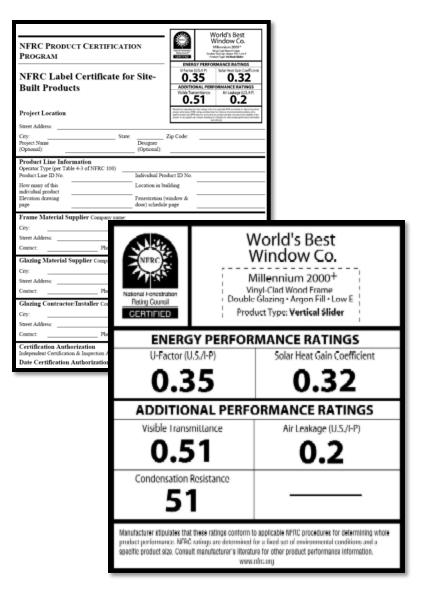
Increased Vertical Fenestration with Daylighting Controls - C402.3.1.1


Up to 40% vertical fenestration allowed in **Climate Zone 1–6** provided:

- No less than 50% of the conditioned floor area is within a daylight zone
- Automatic daylighting controls are installed in daylight zones; and
- ✓ VT of vertical fenestration is ≥
 1.1 times SHGC

Exception:

Fenestration that is outside the scope of NFRC 200 isn't required to comply with VT



Prescriptive Approach Compliance: Fenestration U-Factor C303.1.3

- Q: How Do I Meet the Requirements?
- A: NFRC Product Certification
- ✓ Fenestration product rating in accordance to NFRC 100
- Labeled and certified by the manufacturer

Non-NFRC 100 rated fenestration \rightarrow Default Glazed Fenestration U-factor Table C303.1.3(1)

Default U-Factors (No NFRC Tag) Tables C303.1.3(1) and (2)

TABLE C303.1.3(1) DEFAULT GLAZED FENESTRATION U-FACTOR

In most cases, **Default Values** do not meet the **Prescriptive Requirements**

	SINGLE	DOUBLE	SKYLIGHT			
FRAME TYPE	PANE	PANE	Single	Double		
Metal	1.20	0.80	2.00	1.30		
Metal with Thermal Break	1.10	0.65	1.90	1.10		
Nonmetal or Metal Clad	0.95	0.55	1.75	1.05		
Glazed Block	0.60					

TABLE C303.1.3(2) DEFAULT DOOR U-FACTORS

DOOR TYPE	U-FACTOR
Uninsulated Metal	1.20
Insulated Metal	0.60
Wood	0.50
Insulated, nonmetal edge, max 45% glazing, any glazing double pane	0.35

Prescriptive Approach Compliance: Fenestration C402.3

Was 0.25						R Valu	-		
ING E	VELOPE	REQUIREMEN	TS: FENESTRATIO	N					
1	2	3	4 EXCEPT MARINE	5 AND MARINE 4	6	7	8		
		Vertica	l fenestration	•	•				
0.50	0.50	0.46	0.38	0.38	0.36	0.29	0.29		
0.65	0.65	0.60	0.45	0.45	0.43	0.37	0.37		
1.10	0.83	0.77	0.77	0.77	0.77	0.77	0.77		
				•	•				
0.25	0.25	0.25	0.40	0.40	0.40	0.45	0.45		
Skylights									
0.75	0.65	0.55	0.50	0.50	0.50	0.50	0.50		
0.35	0.35					· · · · · · · · · · · · · · · · · · ·	NR		
	1 0.50 0.65 1.10 0.25	1 2 0.50 0.50 0.65 0.65 1.10 0.83 0.25 0.25 0.75 0.65	1 2 3 Vertica 0.50 0.50 0.46 0.65 0.65 0.60 1.10 0.83 0.77 0.25 0.25 0.25 0.75 0.65 0.55	1 2 3 4 EXCEPT MARINE Vertical fenestration 0.50 0.50 0.46 0.38 0.65 0.65 0.60 0.45 1.10 0.83 0.77 0.77 0.25 0.25 0.40 Skylights 0.75 0.65 0.55 0.50	Image Image <th< td=""><td>U Value = 1 / F ING E VELOPE REQUIREMENTS: FENESTRATION 1 2 3 4 EXCEPT MARINE 5 AND MARINE 4 6 Vertical fenestration Vertical fenestration 5 AND MARINE 4 6 0.50 0.50 0.46 0.38 0.38 0.36 0.65 0.65 0.60 0.45 0.45 0.43 1.10 0.83 0.77 0.77 0.77 0.77 0.25 0.25 0.25 0.40 0.40 0.40 0.75 0.65 0.55 0.50 0.50 0.50 0.50</td><td>1 2 3 4 EXCEPT MARINE 5 AND MARINE 4 6 7 Vertical fenestration Vertical fenestration 0.50 0.50 0.46 0.38 0.38 0.36 0.29 0.65 0.65 0.60 0.45 0.45 0.43 0.37 1.10 0.83 0.77 0.77 0.77 0.77 0.77 0.25 0.25 0.25 0.40 0.40 0.40 0.45 0.25 0.25 0.25 0.50 0.50 0.50 0.50</td></th<>	U Value = 1 / F ING E VELOPE REQUIREMENTS: FENESTRATION 1 2 3 4 EXCEPT MARINE 5 AND MARINE 4 6 Vertical fenestration Vertical fenestration 5 AND MARINE 4 6 0.50 0.50 0.46 0.38 0.38 0.36 0.65 0.65 0.60 0.45 0.45 0.43 1.10 0.83 0.77 0.77 0.77 0.77 0.25 0.25 0.25 0.40 0.40 0.40 0.75 0.65 0.55 0.50 0.50 0.50 0.50	1 2 3 4 EXCEPT MARINE 5 AND MARINE 4 6 7 Vertical fenestration Vertical fenestration 0.50 0.50 0.46 0.38 0.38 0.36 0.29 0.65 0.65 0.60 0.45 0.45 0.43 0.37 1.10 0.83 0.77 0.77 0.77 0.77 0.77 0.25 0.25 0.25 0.40 0.40 0.40 0.45 0.25 0.25 0.25 0.50 0.50 0.50 0.50		

NR = No requirement.

- Table C402.3 requirements by these categories:
- ✓ Fixed fenestration
- ✓ Operable fenestration
- ✓ Entrance doors

Fenestration SHGC and VT Product Rating Defaults: Table C303.1.3(3)

Two Options for Meeting the SHGC and VT Requirements

- Fenestration product rated and labeled to NFRC 200, or
- Select default from Table C303.1.3(3)

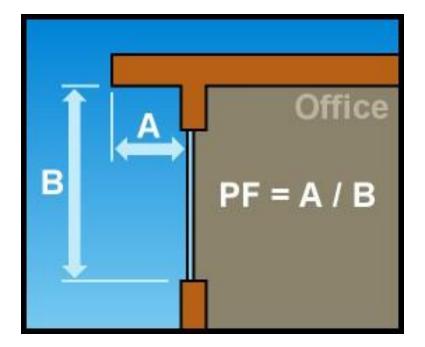

DEPAULT GLAZED FERESTRATION STIGG AND VI									
	SINGLE	GLAZED	DOUBLE	GLAZED	GLAZED				
	Clear	Tinted	Clear	Tinted	BLOCK				
SHGC	0.8	0.7	0.7	0.6	0.6				
VT	0.6	0.3	0.6	0.3	0.6				

TABLE C303.1.3(3)

In most cases, Default Values do not meet the Prescriptive Requirements

Fenestration SHGC Adjustment C402.3.3.1

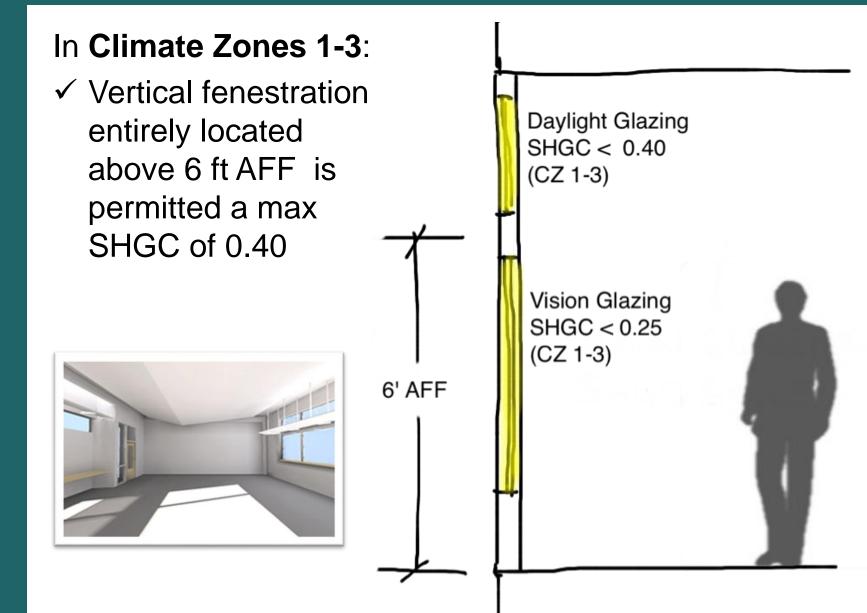
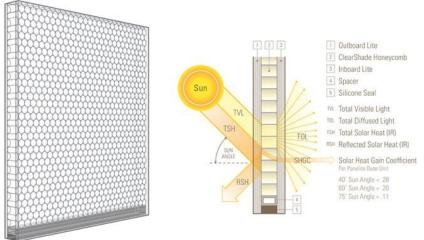

- Overhangs allow a higher SHGC product to be installed
- Projection factor must be calculated
- When different windows or glass doors have different PFs, evaluate separately

TABLE C402.3.3.1 SHGC ADJUSTMENT MULTIPLIERS


PROJECTION FACTOR	ORIENTED WITHIN 45 DEGREES OF TRUE NORTH	ALL OTHER ORIENTATION
$0.2 \le PF < 0.5$	1.1	1.2
PF ≤ 0.5	1.2	1.6
	Would allow SHGC increa from 0.25 to 0.40 in CZ's	

Increased Vertical Fenestration SHGC C402.3.3.2

Dynamic Glazing C402.3.3.5

- SHGC determined using manufacturer's lowestrated SHGC
- ✓ VT/SHGC ratio
 determined using
 maximum VT and
 maximum SHGC
- Considered separately from other fenestration
- Area-weighted averaging isn't allowed

Minimum Skylight Fenestration Area C402.3.2

Skylights *required* In certain types of enclosed spaces

- ✓ Greater than 10,000 ft²
- ✓ Directly under a roof
- ✓ Ceiling heights > 15 ft

Total daylight zone under skylights shall not be less than half the floor area

Exceptions:

- Climate Zones 6-8
- Spaces with LPDs < 0.5 W/ft²
- Documented shaded spaces
- Daylight area under rooftop monitors is > 50% of floor area

Prescriptive Compliance: Interior Lighting C405.5.2

Lighting Power Limits (LPD)

- Building Area Method
- Space-by-Space Method

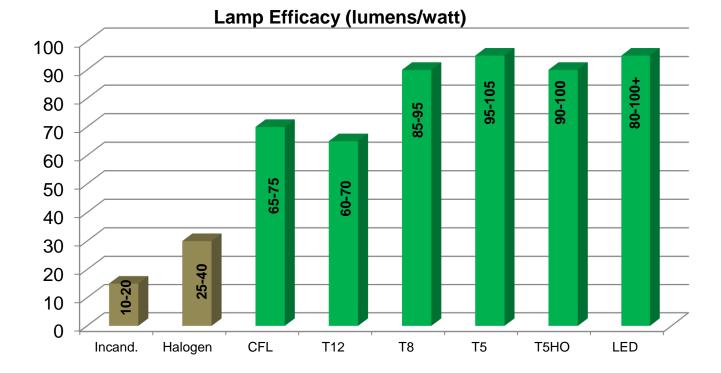
Quality Lighting and low LPD are <u>not</u> mutually exclusive. Requires proactive, integrated lighting design.

- \checkmark Design to prescriptive targets.
- \checkmark Use energy-efficient sources.
- ✓ Don't use incandescents. Ever.
- \checkmark Put the light where you need it.
- ✓ Take advantage of daylight.
- \checkmark Control the lights.
- ✓ Use lightly colored surfaces.

TABLE C405.5.2(1) INTERIOR LIGHTING POWER ALLOWANCES: BUILDING AREA METHOD

	BUILDING AREA METHOD					
	BUILDING AREA TYPE	LPD (w/ft ²)				
	Automotive facility	0.9				
	Convention center	1.2				
	Courthouse	1.2				
	Dining: bar lounge/leisure	1.3				
	Dining: cafeteria/fast food	1.4				
	Dining: family	1.6				
	Dormitory	1.0				
ospi	ital	1.2				
otel		1.0				
ibra	ry	1.3				
lanu	facturing facility	1.3				
lote		1.0				
lotic	on picture theater	1.2				
fulti	family	0.7				
luse		1.1				
ffic	6	0.9	\neg			
1.		0.0				
	Post office	1.1	_			
	Religious building	1.3				
	Retail	1.4				
	School/university	1.2				
	Sports arena	1.1				
	Town hall	1.1				
	Transportation	1.0				
	Warehouse	0.6				

1.4


Li M M M O

Workshop

Select Energy Efficient Light Sources

Halogen is <u>not</u> an "energy efficient" source

Be sure to spec what you want and get what you spec

Source	Color Rendering Index (CRI)	Color Temp Range (K)	Efficacy (lumens/watt)	Dimmable?
Incandescent	100	2700	10-20	Yes
Halogen	100	2800	25-40	Yes
LED	50-90	2900-6100	80-100+	Yes
CFL	82-90	2700-4100	65-75	Yes

Additional Efficiency Package Options Prescriptive Path C406

One additional efficiency feature must be selected to comply with the IECC

- More efficient lighting system (consistent with 90.1-2010), OR
- More efficient HVAC system, OR
- Installation of onsite renewables
 - 3% of the regulated energy
 - 1.75 Btu or ≥ 0.50 watts per ft² of conditioned floor area

More Efficient Lighting System: Baptist Medical Center South

High Efficiency HVAC: FH Memorial

Onsite Renewables: Darden Restaurant Support Center

PERFORMANCE PATH

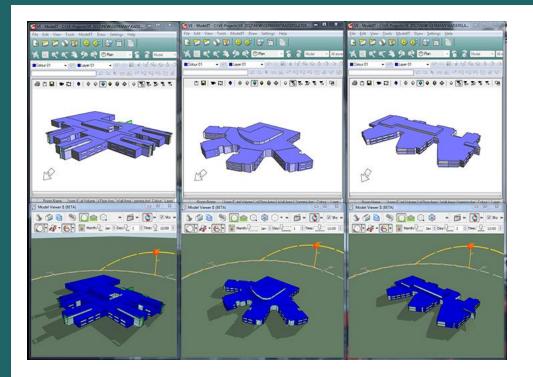
Performance Path

The minute you step off the **Prescriptive Path**, your are entering the **Performance Path**.

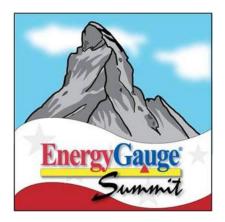
Energy Modeling is Required

Don't get hit by the energy bus because you're looking the wrong way!

Performance Path


PERFORMANCE PATH:

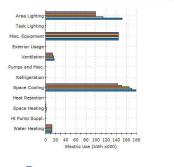
Modeled building energy cost must be **≤85%** of standard reference design building


Performance Path

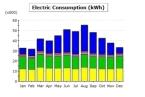
- Must be used if <u>ANY</u> prescriptive requirement is not met. Requires an energy model.
- Allows code compliance to be shown through a total building performance simulation rather than a specific set of requirements for each system.
- Uses an Energy Cost Budget model rather than the Performance Rating Method model used for LEED.
- Prescriptive path defines standard reference design requirements (baseline model)

Modeling Software IECC C407.6

AHJ can approve alternate software

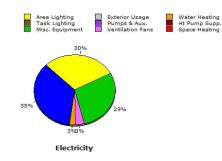


Refrigeration


Heat Rejection

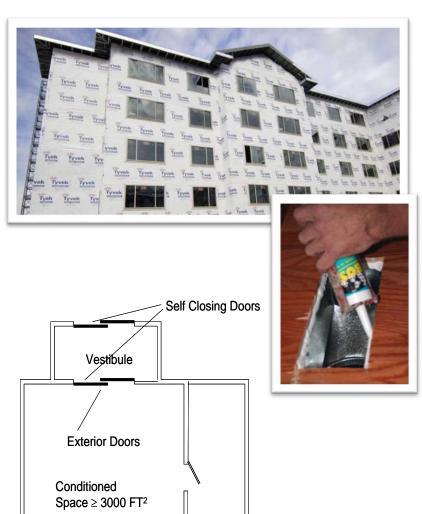
Space Cooling

Annual Energy Consumption by Enduse


AIA SD Wizard Show - ORLANDO - Baseline Design (09/13/12 @ 09:22) AIA SD Wizard Show - ORLANDO - Lighting Power EEM (09/13/12 @ 09:22) AIA SD Wizard Show - ORLANDO - Daylighting EEM (09/13/12 @ 09:22) AIA SD Wizard Show - ORLANDO - Window Area EEM (09/13/12 @ 09:22) AIA SD Wizard Show - ORLANDO - Window Area Stype EEM (09/13/12 @ 09:22)

tric Consumption (kWh x000)

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
Space Cool	5.60	6.86	12.41	12.55	17.50	22.50	22.28	25.83	20.72	15.87	11.73	5,81	179.67
Heat Reject.		-											-
Refrigeration													
Space Heat	0.50	0.02	0.00	-	-	10		-		-		0.22	0.73
HP Supp.													
Hot Water	1.08	1.05	1.26	1.14	1.09	1.09	0.95	1.06	0.97	0.95	0.99	1.09	12.72
Vent. Fans	1.38	1.10	1.44	1.35	1.52	1.70	1.62	1.83	1.61	1.42	1.23	1.36	17.56
Pumps & Aux.	0.02	0.01	0.00	0.00		-	-	-			0.00	0.01	0.04
Ext. Usage													
Misc. Equip.	11.88	11.02	12.82	12.01	12.19	12.33	11.88	12.82	12.01	11.88	11.70	12.19	144.74
Task Lights													
Area Lights	12.18	11.54	13.90	12.73	12.75	13.30	12.18	13.90	12.73	12.18	12.16	12.75	152.31
Total	32.64	31.59	41.84	39.78	45.07	50.91	48.92	55.44	48.04	42.31	37.80	33.44	\$07.77



MANDATORY REQUIREMENTS

Mandatory Requirements: Continuous Air Barrier C402.4

- C402.4.1 Air Barriers
- C402.4.2 Air Barrier
 Penetrations
- C402.4.3 Fenestration air leakage
- C402.4.4 Doors and access openings to shafts, chutes, stairways, and elevator lobbies
- C402.4.5 Air intakes, exhaust openings, stairways and shafts
- C402.4.6 Loading dock weatherseals
- C402.4.7 Vestibules (CZ 1,2 Exempt)
- C402.4.8 Recessed lighting

Air Barriers and Construction C402.4.1 and C402.4.1.1

CZ's 1-3 Exempt

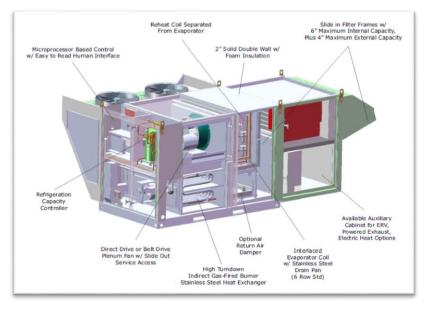
Continuous Air Barrier

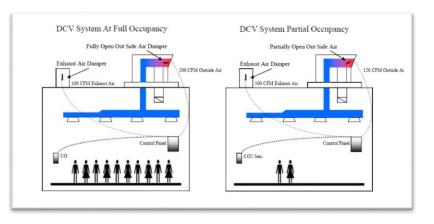
- Placement allowed
 - Inside of building envelope
 - Outside of building envelope
 - Located within assemblies composing envelope OR
 - Any combination thereof
- Continuous for all assemblies part of the thermal envelope and across joints and assemblies

Three ways to comply with air barrier requirements	Requirement	Pressure Differential Testing Requirement	ASTM Standard		
1. Materials	Permeance ≤ 0.004	0.3 in w.g	ASTM E 2178		
2. Assemblies	Air Leakage ≤ 0.04 cfm/ft ²	0.3 in w.g	ASTM E 2357, 1677 or 283		
3. Building	Air Leakage ≤ 0.40 cfm/ft ²	0.3 in w.g	ASTM E779 or equivalent method approved by AHJ		
Joints and seams to be sealed per C402.4.2					

Air Leakage of Fenestration C402.4.3

CZ's 1-3 NOT Exempt

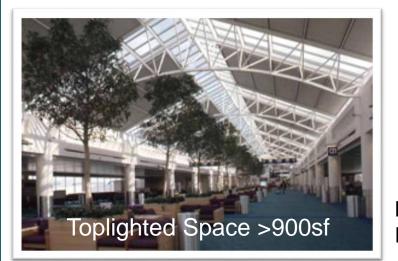

Fenestration Assembly	cfm/ft ²	Test Procedure		
Windows, sliding glass doors, and swinging doors	0.20	AAMA/WDMA/CSA 101/I.S.2/A440 or NFRC		
Skylights - with condensation weepage openings	0.30	400		
Skylights – all other	0.20			
Curtain walls and storefront glazing	0.06	NFRC 400 or ASTM E283 at 1.57 psf		
Commercial glazed swinging entrance doors	1.00			
Revolving doors	1.00			
Garage doors	0.4	ANSI/DASMA 105, NFRC		
Rolling doors	1.00	400, or ASTM E283 at 1.57 psf		


Exceptions:

- Field-fabricated fenestration assemblies
- Fenestration in buildings that meet the building test for air barrier compliance option

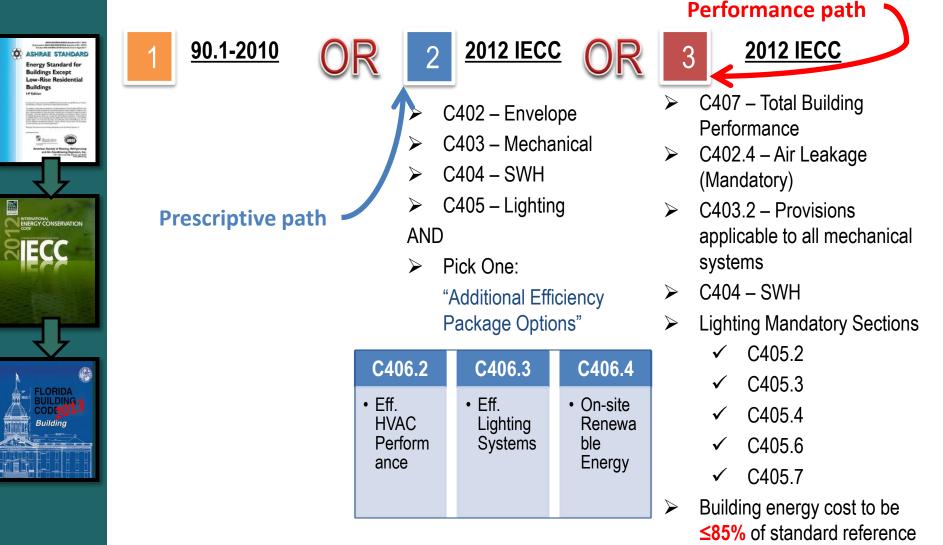
Mechanical System Mandatory Requirements C403.2

- HVAC Load Calculations & Equipment and System Sizing:
 Output shall not exceed sizing from load calcs
- HVAC Equipment Performance (Efficiency) Requirements
- ✓ HVAC System Controls: 5 deg deadband, off hour, automatic start, humistatic controls
- ✓ Demand Control Ventilation
- ✓ Energy Recovery Systems
- ✓ HVAC System
 Commissioning and Completion
- Air System Design and Control (fan hp limits)



Electrical Power & Lighting Systems Mandatory Requirements C405

Automatic Daylight Controls *Required* in Daylight Zones


Mandatory Lighting Requirements

Automatic Lighting Controls Additional Lighting Controls Exterior Lighting Power & Controls Functional Testing (Cx) of Lighting and Controls

Remember, Interior Lighting Power is *prescriptive* Space by Space Method Building Area Method

Exception: Enclosed areas with 2 or fewer fixtures

One More Time: Commercial Compliance Options

design building

This concludes The American Institute of Architects Continuing Education Systems Course

TLC Engineering for Architecture

Brian Lomel, PE, LEED-AP, CxA

brian.lomel@tlc-eng.com

Questions & Discussion

High Performance Design is about **Teamwork**