

AABC Commissioning Group

Building Trek: The Next Big Thing in Energy Performance

Course Number: CXENERGY1623

Mark Gelfo PE, CxA, EMP, LEED Fellow TLC Engineering for Architecture April 12, 2016

Continuing Education

Credit(s) earned on completion of this course will be reported to AIA CES for AIA members. Certificates of Completion for both AIA members and non-AIA members are available upon request. CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product.

This course is registered with AIA

Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

Learning Objectives

At the end of this session, participants will be able to:

- Understand and discuss the history of building design and how TECHNOLOGY has impacted building design and construction - including unintended consequences of technology.
- Understand how buildings use energy and the changing focus on PERFORMANCE as one of the Next Big Things, and apply performance based energy and water strategies such as measurement & verification, to new construction and existing building
- 3. Discuss the **RENEWABLE ENERGY** markets and advances in solar systems, fuel cells, wind, etc and their impact on have on grid parity. Also be able to understand the impact and importance of increased energy efficiency, building commissioning, on the future of building design.
- 4. Understand how **HEALTH & WELLNESS** and **RESILIENCY** including distributed generation, microgrids, solar and water storage will impact building design, construction and operations in the future.

The Search for...The Next Big Thing

A Brief History of Buildings and Technology

What is Technology ?

This is Technology

"If I had asked people what they wanted, they would have said 'faster horses'."

-Henry Ford

Buildings that Last

Buildings Worked with Nature

Buildings were Resilient

Infrastructure Saved the Day

New York's water system established - an aqueduct brings fresh water from Westchester.

NYC creates **Central Park**, hailed as "ventilation for the working man's lungs", continuing construction through the height of the Civil War

Dept. of Street-sweeping created, which eventually becomes the Department of Sanitation

New York State Tenement House Act banned the construction of dark, airless tenement buildings

1904

First section of **Subway** opens, allowing population to expand into Northern Manhattan and the Bronx

Zoning Ordinance requires stepped building setbacks to allow light and air into the streets

Air Conditioning Changes Architecture

Windowless Workplace

Overcompensating Creates New Problems

Sick Buildings

How We Design

Computer Aided Drafting

Uniformity of Design

The Next Generation

Energy Code Adoption by State

* Adopted new Code to be effective at a later date

As of March 2016

ASHRAE 90.1 and IECC Over Time

Relative Energy Performance of ASHRAE 90.1 & IECC

Integrated Approach

The Future

The Next Big Thing(s)

Performance

Performance

- Building Codes
- LEED v4
- Owner Demands
- Value & Cost of Energy Sources
- Cx, M&V, RetroCx
- Energy Modeling
- Data & Metrics

Sustainability

It's about...

Performance

Buildings Use A Lot of Energy

Commercial Compliance Options

Performance Path: An Opportunity

Prescriptive Requirements...

Great Place to start

Not all make sense

Restrictive

Expensive

Energy Modeling Allows...

Creative Design Solutions Project Specific Best solutions Synergistic

Flexible

Energy Modeling

Space Heating

4%

6%

3%

Space Cooling

Impact of Envelope on Energy Performance

Types of Energy Models

Mandatory Requirements

Commissioning is REQUIRED (C408)

Commissioning is NOW REQUIRED by CODE !!
Code Required Cx (C408)

Service Water Heating Systems, Pools, Spas (2015, C408.2) Lighting Controls Functional Testing (C408.3) Code Minimum Cx Process: Preliminary Commissioning Report

C408.2.4.1

0

You can't pass the final mechanical inspection without the Preliminary Cx Report

Every Building is an Existing Building

ENERGY MANAGEMENT ASSOCIATION The #1 Resource of Energy Management Professionals

Existing Building Energy Auditing & EBCx Process

Performance Verification

You can observe a lot just by watching.

Yogi Berra

Measuring Performance

The Two Biggest Things you can do to improve the Energy Performance of your Building are :

1. Commissioning

2. Measurement & Verification

My Water M&V Example

My Water M&V Example

My Water M&V Example

Proven Results

St. Vincent's Medical Center Clay County Middleburg, Florida

ENGINEERING

FOR ARCHITECTURE

HKS Architects

Constructor: Brasfield & Gorrie

\$45 Million 155,000 sf

Five+ Years Savings: \$150,000 / year Average ROI: 33%

Constructor: CanAm Electrical Contractors, Douglas Orr Plumbing and JCI

Tyndall Air Force Base Fitness Center & Energy Demonstration Project

Panama City, Florida

Architect: Atkins North America

Constructor: Carothers Construction

\$18 Million 75,278 sf

Everbank Center Jacksonville, Florida

Renewable Energy

Renewable Energy

Renewable Energy

2015 US Electricity Production

Coal: Declining Fast Nat Gas: Up, Now Holding Nuclear: Steady Hydro: Up slightly Wind: Big Growth since 2008 Solar: Fastest Growing

Top Solar States in 2015

U.S. PV Installations 2010 - 2015

Grid Parity is Coming

Grid Parity Year	Aggressive Case	Base-Case
Utility PV Price	2017-18	2019-20

What is Grid Parity?

Levelized Cost Comparison of Utility-Scale PV vs Conventional Power at Grid

Does Solar Pay Back?

PV Quick Calcs

MONOCRYSTALLINE SOLAR MODULE STP2755 / STP2705 - 20/Wem

High module conversion efficiency

Module efficiency up to 16.9% achieved through advanced cell technology and manufacturing capabilities

Positive tolerance Positive tolerance of up to 5% delivers higher outputs reliablity

Extended wind and snow load tests

Module certified to withstand extreme wind (3800 Pascal) and snow loads (5400 Pascal) *

Rules of Thumb:

5-10 watts / sf of array

\$3-ish per watt installed... but dropping

30% Fed Tax Credit

extended to 2021!

275 W Module 65" x 39" x 1.4" (17.5 sf) STC Rating (Wp) = 275 W NOCT Rating = 202 W

Solar Thermal Quick Calcs

Ex: TitanPower-ALDH29 85"x50"x4" (28sf) 82% efficient 10 Panels In FL, mtd at 28 deg tilt South Facing

Rough Estimate

10 x 28sf x 1.72 kBTU/sf/day x 82% eff x 90% (10% sys loss) = 355 kBTU/day; 129,729 kBTU/yr

My Solar Example

In 2015

- 6 Panels
- 275 W / Panel
- 1.65 kW
- 2140 kWh/yr
- \$3.94/W Installed
- \$2.75/W 30% Fed Tax Credit
- \$0.18 / kWh to Produce
- \$0.13 / kWh from JEA

For Grid Parity

• Add 10,000 kWh/yr

To achieve **\$0.12/kWh** I need:

- ✓ Battery <\$1 / kWh Installed
- ✓ PV < \$2 / W Installed
- ✓ >500W / Panel

How to Get to NET ZERO

Net Zero-Energy Building – Prototype Haskell Company

Reduce Demand

2.

- Take Advantage of Free Energy
- 3. Capture Waste Energy
- Equipment Efficiency & Controls
- 5. Add Renewables

Can't have Net-Zero Building without Net-Zero Tenants

Don't Forget Commissioning

Cx of 2.8 kW PV Array

Josey Pavilion Decatur, Texas

Lake | Flato

NET ZERO ENERGY

Turn Rooftops & Parking Lots into Power Plants

Darden HQ Orlando, FL 1.1 MW PV Array

Physical Fitness Center Camp Lejeune, NC 150 kW PV Array

Net Zero Homes of the (Near) Future

Energy Storage is the Silver Bullet

Residential

Commercial

Utility

Health & Wellness

Health & Wellness

- Biophillic Design
- Active Design
- WELL Building Standard
- IAQ & Controllability
- Productivity & Cost

New Health & Wellness Challenges

THE 19th CENTURY:

Infectious Diseases

19th Century <u>codes</u>, <u>planning and</u> <u>infrastructure as weapons</u> in the battle against contagious disease

These strategies were built into the city fabric, and they were <u>effective</u>

THE 21st CENTURY:

Chronic Diseases, many of which are "Diseases of Energy"

The emerging <u>design solutions for</u> <u>health parallel sustainable design</u> solutions

Effective designs will have to be an invisible, <u>pervasive</u>, and inevitable <u>part</u> <u>of life</u>

Source: U.S. Centers for Disease Control and Prevention (CDC)

Medical Costs = \$147B per yr

Today..... over

Source: U.S. Centers for Disease Control and Prevention (CDC)

Active Design

WELL Buildings

THE SEVEN CONCEPTS OF THE WELL BUILDING STANDARD

LEVELS OF WELL CERTIFICATION

10 year Commercial Building Cost

Energy Costs = \$2/sf/yr | People Costs = \$250/sf/yr

Resiliency

Resiliency

RESILIENCY

- Withstand, Respond, Adapt
- Distributed Generation
- Role of Solar
- Water Use & Reuse

Resilient systems exhibit certain qualities that enable them to withstand, respond, and adapt

more readily to shocks and stresses

Reflective	Resourceful	Robust	Redundant	Flexible	Inclusive	Integrated
Ability to learn	and act	conceiving systems & assets that can withstand shocks & stresses as well as using alternative strategies to facilitate rapid recovery			planned to take account of city-wide needs and promote coordinated actions	

100 RESILIENT CITIES

7

Resiliency

Sudden shocks or accumulating stresses can lead to social breakdown, physical collapse, or economic decline.

3

100 RESILIENT CITIES

Transporting Power

Distributed Generation & Microgrids

http://www.microgridinstitute.org/

Part of the Solution: Solar Power & Energy Storage

Sources: SolarCity, Tesla, U.S. Energy Information Administration, staff reports THE WASHINGTON POST

Part of the Solution: Free Water from the Sky

Blue is the New Green: Rainwater Regulations

State Rainwater | Graywater Harvesting Laws and Legislation

Accelerating Innovation

Questions & Discussion

www.tlc-engineers.com mark.gelfo@tlc-eng.com