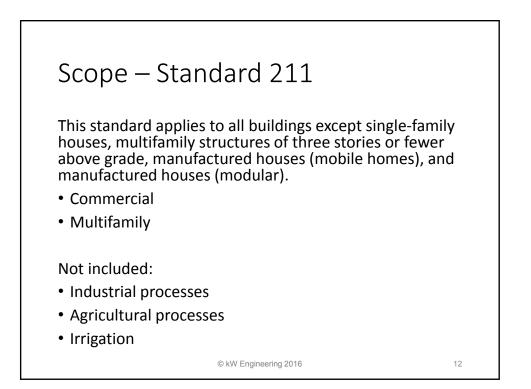

Energy Audits are like photography

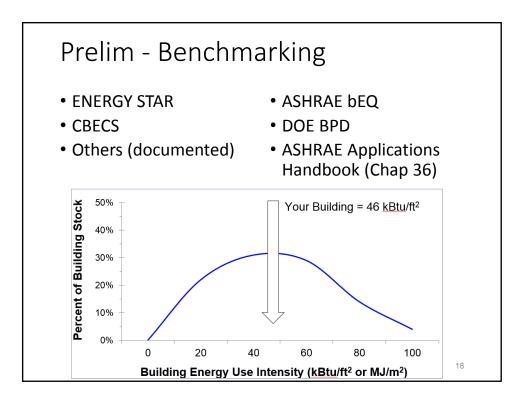


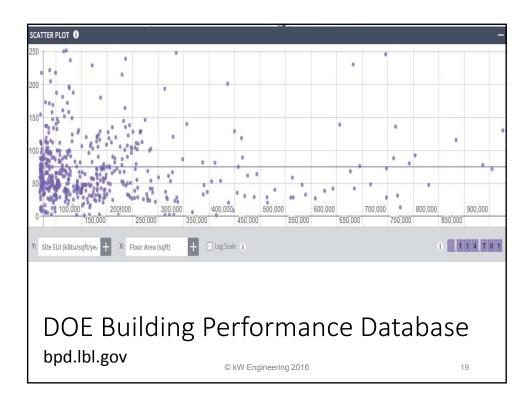
Mandatory Audits

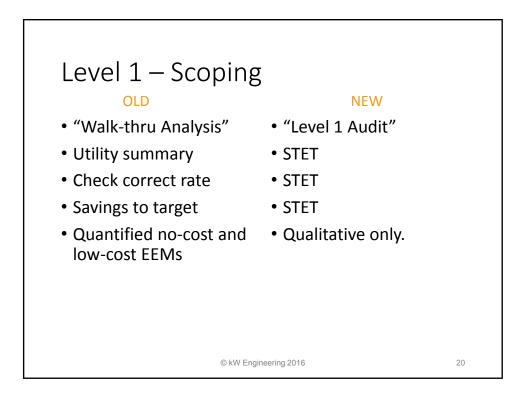
An "awkward wedding"?

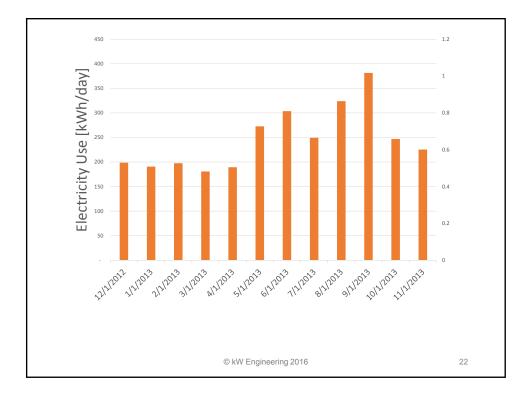
- Cities want to encourage energy savings
- Puts regulatory pressure on building owners
- Downward pressure on price
- Can lose sight of value

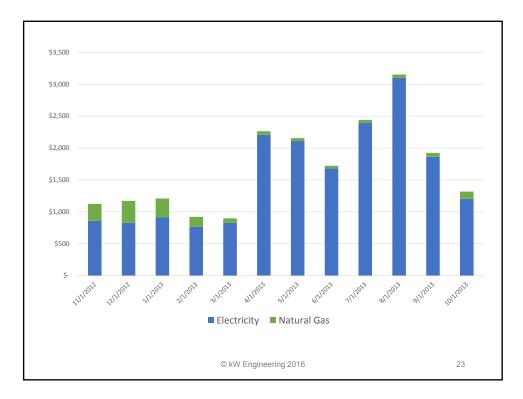
© kW Engineering 2016

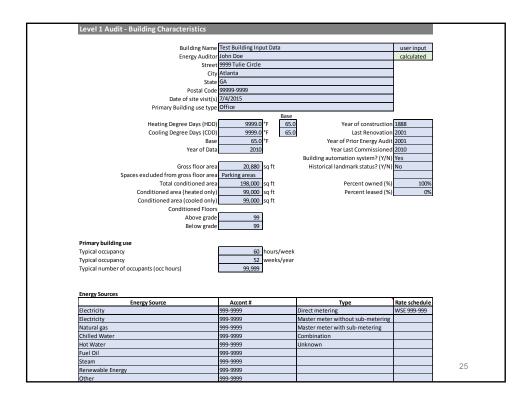


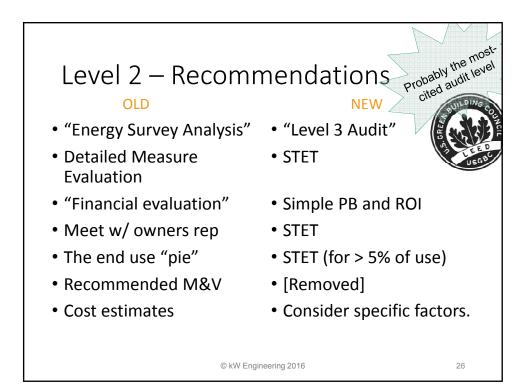

7

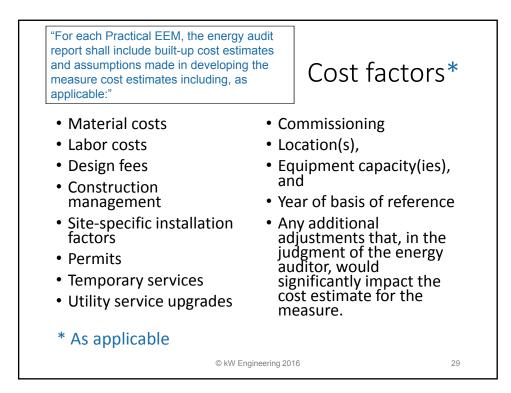


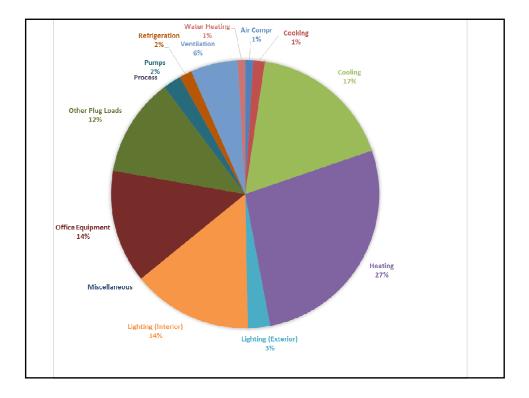


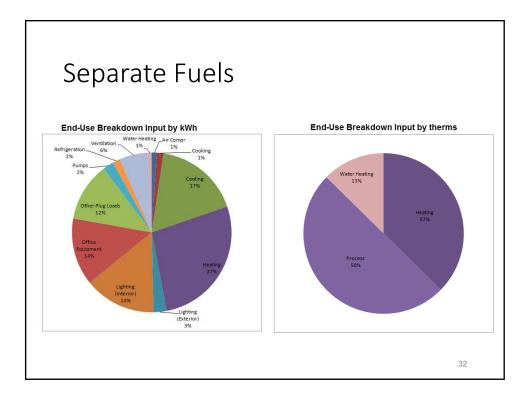




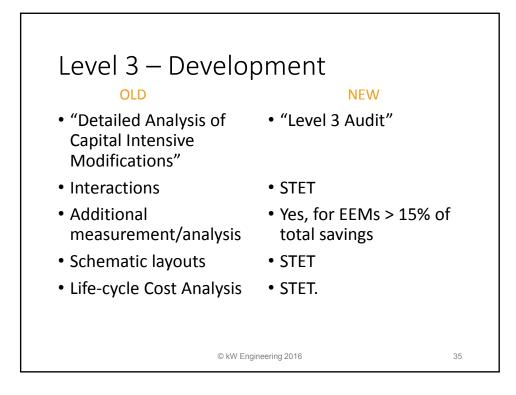

U	tilit	y	Sur	nm	ary								
	udit - Mei	toro	Enormy										
			0,										
(use multiple copies to show prior years) Building Name Test Building Input Data				Date					user	input			
	ross floor area 20880			Dute						ulated			
			20000				Ener	gy Type X (i	f applicable)		1	caree	
Start Date	End Date	Days	Electricity Use (kWh)	Electricity Peak (kW)	Electricity Load Factor [-]		ectricity ost (\$)	Natural Gas Use (Therms)	Natural Gas Cost (\$)	Energy Type	Energy Type X* Cost (\$)		l Cost \$)
10/25/2013	11/23/2013	30	6,760			\$	1,204	207	\$ 113			\$	1,317
9/26/2013	10/24/2013	29	7,160			\$	1,863	94	\$ 61			\$	1,924
8/27/2013	9/25/2013	30	11,440			\$	3,100	69	\$ 53			\$	3,153
7/27/2013	8/26/2013	31	10,040			\$	2,393	52	\$ 48			\$	2,441
6/27/2013	7/26/2013	30	7,480			\$	1,679	43	\$ 43			\$	1,722
5/29/2013	6/26/2013	29	8,800			\$	2,110	52	\$ 46			\$	2,156
4/27/2013	5/28/2013	32	8,720			\$	2,209	73	\$ 56			\$	2,265
3/28/2013	4/26/2013	30	5,680			\$	825	121	\$ 73			\$	898
2/27/2013	3/27/2013	29	5,240			\$	766	288	\$ 154			\$	920
1/26/2013	2/26/2013	32	6,320			\$	916	604	\$ 293			\$	1,209
12/27/2012	1/25/2013	30	5,720			\$	827	759	\$ 345			\$	1,172
11/27/2012	12/26/2012	30	5,960			\$	858	540	\$ 266			\$	1,124
Annua	al Total	362	89,320	-		\$	18,750	2,902	\$ 1,551	-	\$-	\$	20,301
Notes:							Unit X	: Definition	kBtu/unit Units	12 ton-hrs			
					© kW Ei	ngin	ieering 2	016				21	1

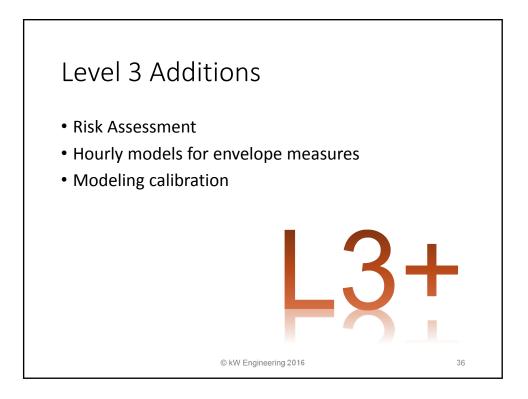

Recommendations	Modified System	Savings Source	Impact on Occupant Comfort	Effect on Building Systems	Cost	Savings Impact	Typical ROI	Priority
Add VFD to Chilled Water Pumps	CHW Distribution	Reduced CHW pumping energy	- none -		_	•	-	•
Convert manual radiator valves to thermostatic models	Steam Radiators	Reduced excess steam heat	Improved temperature control in zones			_	_	_
Demand Controlled Ventilation	Air Distribution	Reduced outside air when not needed	Improved ventilation during min OA hours		-	_	_	_
Changes: L1 Simplifications								
	© kW Engineering 2016 24							

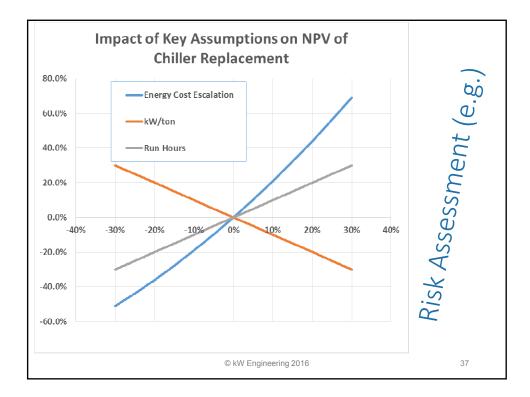



Level 2 Au	dit - HVAC System		
(check all that	apply)		
	Air Handler Unit (AHU)	Constant Vol	ume
Cooling			
Distribution	Hydronicto zone equipment (e.q. fa		gedterminal unitsor radiators)
Equipment	Refrigerant to zone equipment (e.g	fan milunits nad	kaped terminal units or radiators)
Туре	None (i.e. electrically driven PTAc, t	-	
	Other		
	🗌 Air Handler Unit (AHU)	Constant Vol	lume
Heating		VAV	
Distribution	Hydronicto zone equipment (e.g. f	an coil units, packa	gedterminal unitsor radiators)
Equipment	📃 Steam to zone equipment (e.g. fan	coil units, package	d terminal units or radiators)
Туре	None (i.e. electrically driven PTAc, b	aseboards)	
	Other		
	No cooling		Bectricity Gas Absorbtion
	DX cooling	Chiller	Gas Steam Absortion
	Central plant	Input	Oil (specifygrade) Steam Turbine
Cooling	Chiller	-	✓ Other
Source	District chilled water	Compressor	Reciprocating Scroll/Screw Centrifugal
		compressor	Centriluga
		Condenser	Air ✓ Water Ground
	Other (specify)		✓ Indirect Evaporative Direct Evaporative
	No heating		Bectricity
	Central furnace		Gas
Heating	Heat pump	Heating fuel	Cil (specifygrade)
Source	Central plant		Other
Jource	District steamor hot water	Steamboile	<u> </u>
	Other	Hydronicbo	
			Bechicity

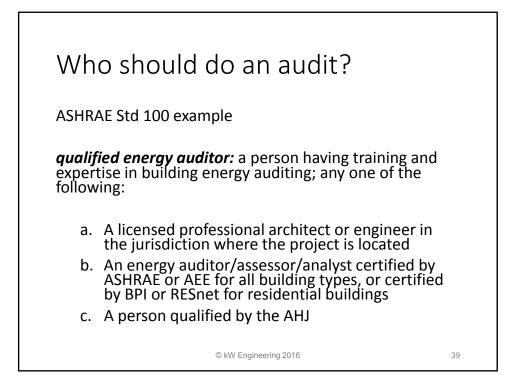
Lighting Source Type(s)	Ballast	Control(s)	Space Type(s)	Approx %
5 - 5	Type(s)		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Area Serve

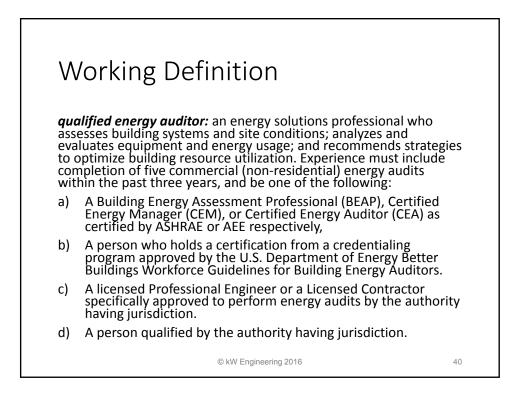

	Base Case				
	CFM	36,040			
Covingo Colos	SP	1.75			
Savings Calcs	Fan Eff	70%			
	Fan BHP	14.2			
	Motor Eff	85.5%			
 State assumptions 	Fan kW	12.4			
 "same energy analysis 	houls	3,128	$\boldsymbol{\mathcal{S}}$		
method shall be used	Annual use	38,705	kWh		
for pre-retrofit and post-retrofit calculations. "	Proposed Case				
	Fan kW	12.4			
 State changes 	houis	2,607	$\boldsymbol{\mathcal{A}}$		
 EEM interaction 	Annual use	32,255	kWh		
 No "black boxes" 	Savings				
 Simulation inputs 	Base Annual use	38,705	kWh		
· · · · · ·	Proposed Annual use	32,255	kWh		
© kW Engineering 2016	Annual Savings	6,451	kWh		
e kir Engineering zero					

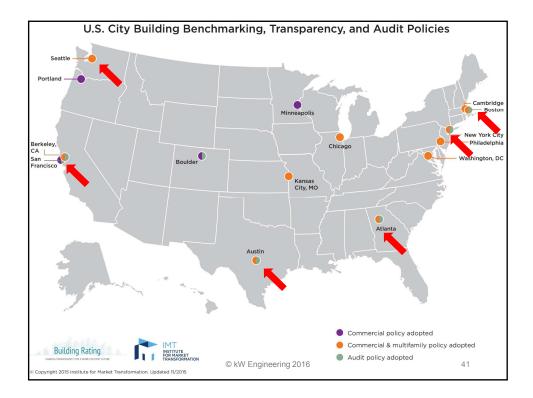


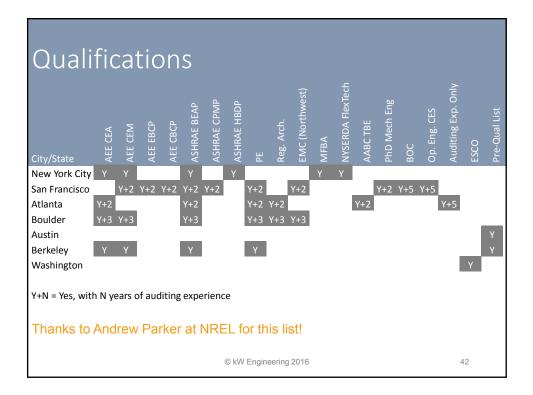


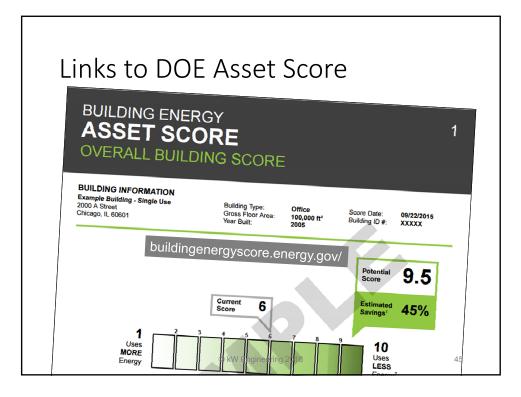
	Inp	ut Energy Uni	ergy Units Combined Energy U				
			gallons				
End Use	kWh	therms	(propane)	kBtu	%		
Air Compressors	25,000	-		85,304	19		
Cooking	36,000	-	9,800	1,017,870	69		
Cooling	445,996	-		1,521,800	109		
Heating	699,993	20,640		4,452,455	289		
Lighting (Exterior)	68,455	-		233,578	19		
Lighting (Interior)	371,996	-		1,269,304	89		
Miscellaneous	-	-	5,600	511,448	39		
Office Equipment	350,856	-		1,197,170	89		
Other Plug Loads	305,997	-		1,044,105	79		
Process	-	27,620		2,761,972	189		
Pumps	56,525	-		192,871	19		
Refrigeration	38,500	-		131,367	19		
Ventilation	146,999	-		501,580	39		
Water Heating	22,000	6,970		772,059	5%		
Total Estimated	2,568,316	55,229	15,400	15,692,885	100		
Historical Billing	2,575.020	56.800	15,500	15,881,949			
Percent of Actual	99.7%	97.2%	99.4%	98.8%			
Total per ft^2	25.7	0.6	0.2	156.9			


Savings [kWh]	End Use Consumption [kWh]	% of End Use	
55,000	372,000	15%	
36,000	446,000	8%	
26,000	25,000	104%	>
	[kWh] 55,000 36,000	[kWh] [kWh] 55,000 372,000 36,000 446,000	[kWh] [kWh] 55,000 372,000 15% 36,000 446,000 8%

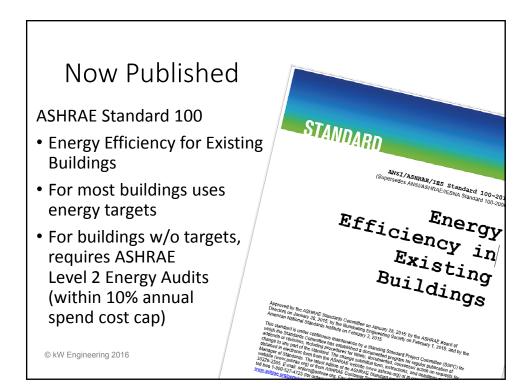




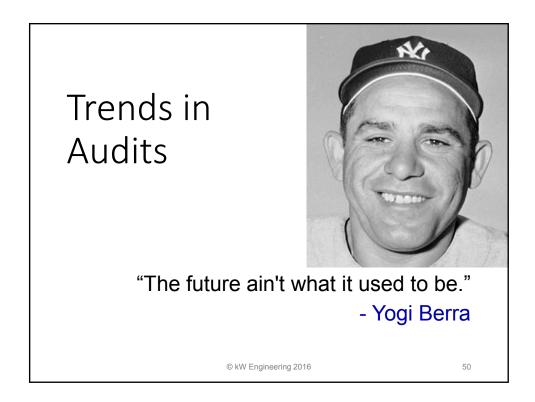

Modeling calibration						
Data	CVRMSE _{MAX}	NMBE_{MAX}	Where:			
Monthly Hourly	15% 30%	5% 10%	CVRMSE	 coefficient of variation of the root mean square error 		
Hourly 30% 10% $CVRMSE = 100 * \frac{\sqrt{\frac{\sum(y_i - \hat{y}_i)^2}{n-1}}}{\bar{y}}$ $NMBE = 100 * \frac{\sum(y_i - \hat{y}_i)}{(n-p) * \bar{y}}$		NMBE y y^ ybar p	 normalized mean bias error measured value model predicted value mean value of the measured data 			
		© kW Engi	neering 2016	38		


4/21/2016



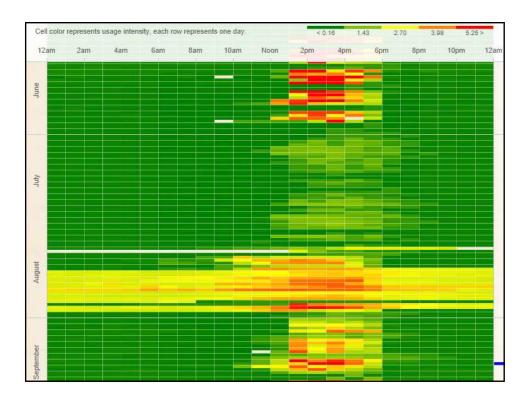

AEE CEA	AEE Certified Energy Auditor	
AEE CEM	AEE Certified Energy Manager	
ASHRAE BEAP	ASHRAE Building Energy Assessment Professional	
ASHRAE HBDP	ASHRAE High Performance Building Design Professional	
MFBA	Multi Family Building Analyst	
NYSERDA FlexTech	NYSERDA FlexTech	
PE	Professional Engineer	
Reg. Arch.	Registered Architect	
AABC TBE	Associated Air Balance Council Test & Balance Engineer	
PhD Mech Eng	PhD Mechanical Engineering	
ASHRAE CPMP	ASHRAE Commissioning Process Management Professiona	I
AEE EBCP	AEE Existing Building Commissioning Professional (EBCP)	
AEE CBCP	AEE Certified Building Commissioning	
EMC (Northwest)	Northwest Energy Management Certification	
BOC	Int'l Building Operator Certification Level II	
Op. Eng. CES	Int'l Union of Operating Engineers Cert. Energy Specialist	
Auditing Exp. Only	Energy Auditing Experience without any qualifications	
ESCO	Energy savings performance contractor	
Pre-Qual List	City provides a list of qualified auditors	
	© kW Engineering 2016	43

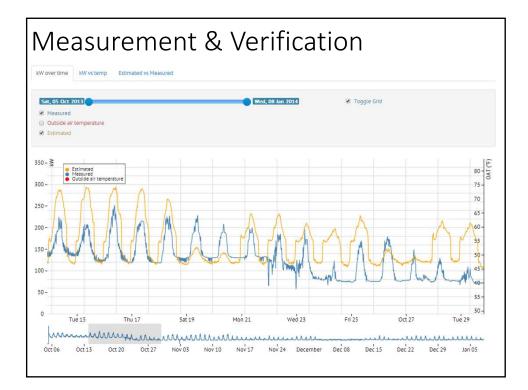
1. EXECUTIVE SUMMARY a. Overall Assessment of Benchmarking and Energy Performance b. Aggregated Savings and Costs of Recommended Measures c. Table of Recommended Measures with Savings and Costs Suggested 2. INTRODUCTION a. Audit Scope b. Key Dates Outlines c. Contact Information 3. FACILITY DESCRIPTION a. Building Information b. Building Envelope (not required) c. HVAC d. DomesticService Hot Water e. Lighting f. Electrical g. Process and Plug Loads, Vertical Transportation 4. HISTORICAL UTILITY DATA a. Data Summary and Rate Structure b. Benchmarking c. Target and Savings Estimate d. End-Use Breakdown 5. ENERGY SAVING OPPORTUNITIES a. Low Cost/No Cost Savings Measures b. Capital Projects c. EEMs Considered but Not Recommended d. O&M Measures 6. SPECIAL CONDITIONS APPENDICES · Tabulated Utility Data · Utility Rate Schedules · Calculation Methodology · Savings Calculations · Cost Estimates Equipment Inventory Tables · O&M Logs · Equipment Specifications © kW Engineering 2016 44

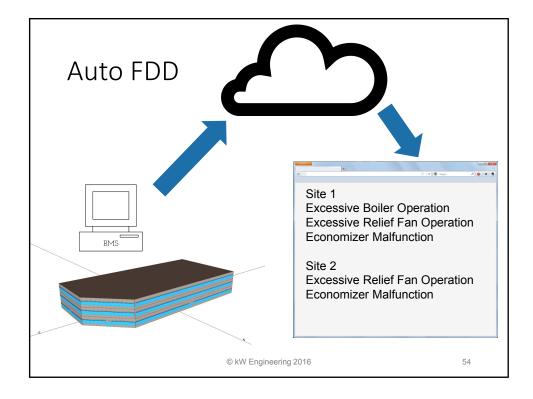


NORMATIVE ANNEX A -	COMPLIANCE FOI	RM			
	Form A - Complia	ance with Stan	dard 211		
Name of Facility					Compliance
Street Address	1			V	eempnanee
City	State	e	Zip Code		Form
Building Owner:		1	1		
	- 1				
Name of qualified energy aud	litor:				
Street Address					• You will need to
City	St	State	Zip Coo	le	submit a form
Telephone No.					
Qualifying Certification:					that says you
Have the xxx requirements of	Section x been met	t?[]Yes[]N	0		
nare the same qui entend of					comply
Have the xxx requirements of	Section x been met	t? [] Yes [] N	0		• If All requires
					 If AHJ requires
Date the Level 1 Audit was co					a license to
Date the Level 2 Audit was co					
Date the Level 3 Audit was co	mpleted.				submit
				1.1	
I state that the attached Ener	gy Audit Report com	nplies with AN	SI/ASHRAE S	tandard 211:	
Standburg of such field and such			Deter		
Signature of qualified energy Signature of Authority Having			Date:		
Signature of Authority Having	sunsulction:				
Compliance		Date:			
		Dutc.	© kW En	gineering 2016	46

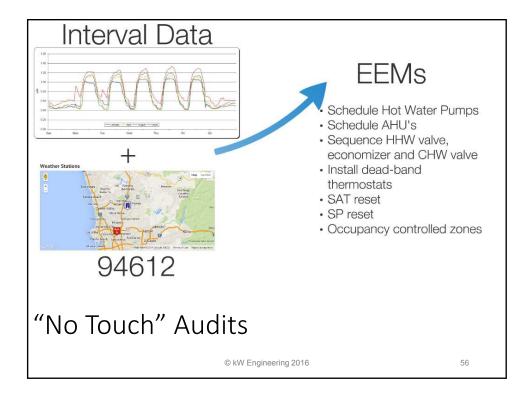
Std 100	
) a a a man dation a
ivieasure r	Recommendations
	E4.2.10 Install low-flow toilets and waterless urinals
	E4.2.11 Use water reclamation techniques.
	E5. ENERGY GENERATION AND DISTRIBUTION
	E5.1 Boiler System
	E5.1.1 Install air-atomizing and low NOx burners for oil-fired boiler
	E5.1.2 Investigate economics of adding insulation on presently insulated or uninsulated lines. If pipe or duct insulation is missing, replace it with new material. Ensure that the pipe insulation and vapor barrier is maintained or enhanced to ensure thermal performance and avoid water vapor intrusion.
	E5.1.3 Review mechanical standby turbines presently left in the idling mode.
	E5.1.4 Review operation of steam systems used only for occasional services, such as winter-only tracing lines.
	E5.1.5 Review pressure-level requirements of steam-driven mechanical equipment to consider using lower exhaust pressure levels.
	E5.1.6 Survey condensate presently being discharged to waste drains for feasibility of reclaim or heat recovery.
	E5.1.7 Reduce boiler operating pressure to minimize heat losses through leakage.
	E5.2 Chiller System
	E5.2.1 Chiller retrofits with equipment that has high efficiency at full and part load.
	E5.2.2 Cooling tower Fertolity Stelled Big High-Hitciency fill, VSD fans, fiberglass fans, hyperbolic stack extensions, fan controls, VSD pump drives, and improved distribution nozzles.

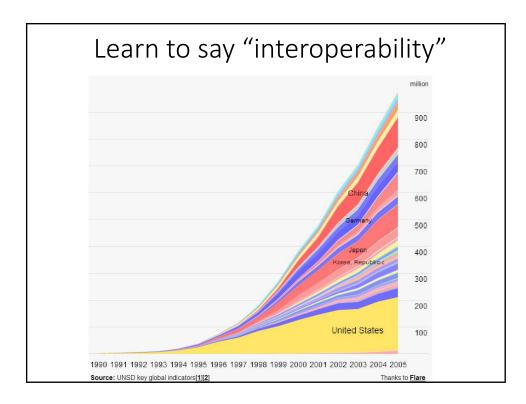


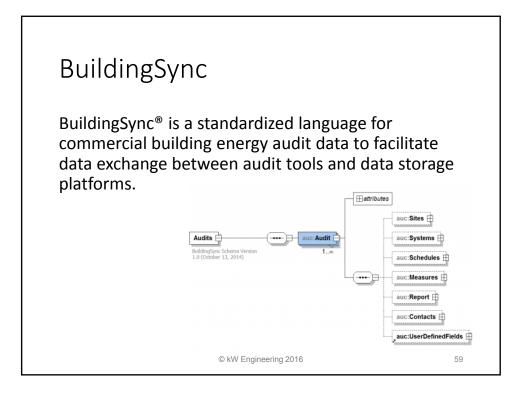


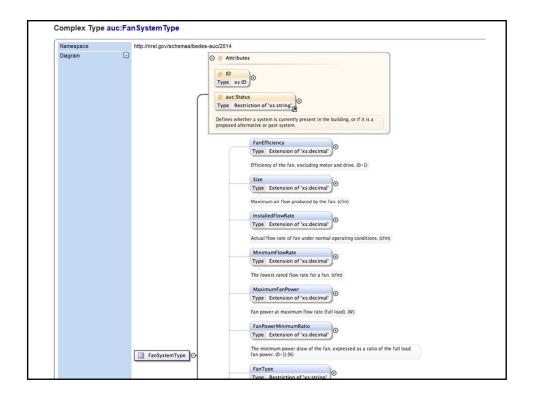

- Visualizations
- M&V
- Automated Fault Detection & Diagnostics (Auto FDD)
- "No-touch" or "remote audits"
- Data Collection
- Reporting

© kW Engineering 2016

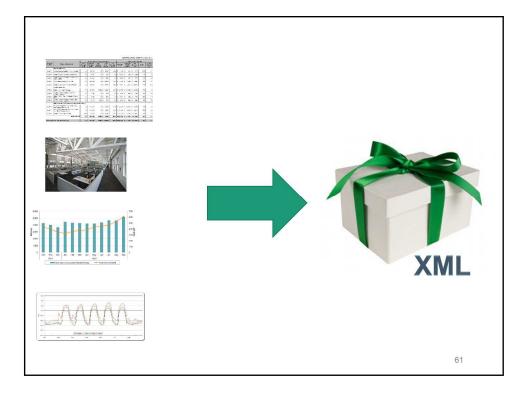

51

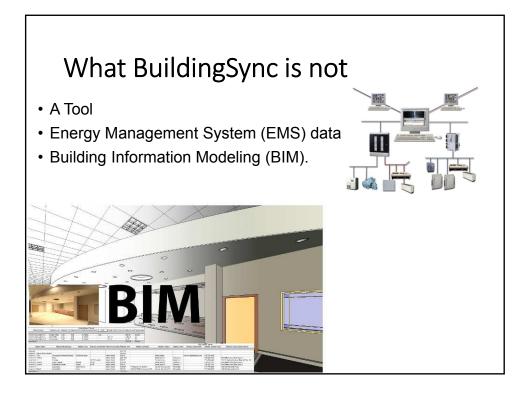

Disruptive Innovation - Clayton Christensen

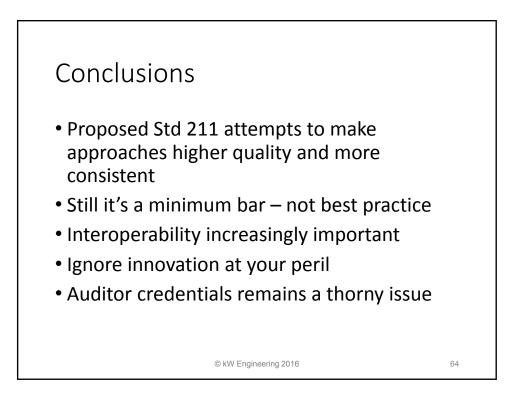

www.claytonchristensen.com/key-concepts/ ▼ Clayton M. Christensen ▼ **Disruptive innovation**, a term of art coined by Clayton Christensen, describes a process by which a product or service takes root initially in simple applications at the bottom of a market and then relentlessly moves up market, eventually displacing established competitors.


- Typically initially lower quality
- Offers other features that consumers like
- Quality improves over time

© kW Engineering 2016


Interoperability & Audits


There is no reason to support analytics that are data "dead ends"


Instead:

- BuildingSync
- GreenButton Connect
- Missiondata.org
- OpenEl.org
- Open Energy Data Initiative (EDF)

