

AABC Commissioning Group AIA Provider Number 50111116

Energy Modeling as a Tool for Retrocommissioning

Course Number: CXENERGY1714

John Bixler, P.E. NV5 - Sebesta April 26, 2017

Credit(s) earned on completion of this course will be reported to AIA CES for AIA members. Certificates of Completion for both AIA members and non-AIA members are available upon request. CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product.

Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

This course is registered with AIA

Copyright Materials

This presentation is protected by US and International Copyright laws. Reproduction, distribution, display and use of the presentation without written permission of the speaker is prohibited.

Course Description

Energy modeling and retrocommissioning (RCx) can effectively share information to aid in building investigations. The session provides an overview of the mechanics of energy modeling, specific energy model inputs that can be enhanced by RCx information, examples of how to include RCx findings in energy models, and discussion of the insights ged from an energy model that should be used in RCx, strategies to capitalize on synergies between the services.

Learning Objectives

At the end of the this course, participants will be able to:

- 1. Understanding of an energy model.
- 2. Understand how an energy model can be utilized for existing building analysis.
- 3. Identify the increased value that can be captured by combining energy modeling and retrocommissioning.
- 4. Understand how to interpret model outputs in the context of known performance.

DEFINITIONS Retro-Commissioning:

- ASHRAE: The Cx process applied to an existing facility that was not previously commissioned
- AABC (ACG): Purpose of RCx could be to diagnose the cause of ongoing, unresolved problems, or done as part of a maintenance program

DEFINITIONS

Retro-Commissioning:

Today's definition: Performance analysis of a building that has existed long enough to have useful energy use data

Retro-Commissioning:

- Existing drawing review
- Operator interviews
- Data loggers
- BAS system investigation
- Functional testing
- Trend data analysis
- Utility bill review

DEFINITIONS Energy Modeling:

DoE definition: Physics-based software simulation of building energy use

AIA take on Energy Modeling:

"The energy model and focus on energy performance is not meant to supplant the importance of design. Rather, a building energy model is a tool that can be utilized throughout the design process to test various design options and optimize the performance of all building typologies."

One key message of the guide is that architects needn't become technical experts on energy modeling or the myriad software tools currently available. However, a working understanding of the energy modeling process is needed to empower us to fold this necessary and valuable capability into our fundamentally integrative work"

Load Information

Variable Volume Reheat (30% Min Flow Default)

¬ г

COOLING COIL PEAK					CLG SPACE	PEAK	HEATING COIL PEAK				TEMP	ERATURE	5
Peake O	d at Time: utside Air:	Mo/ OADB/WB/H	/Hr: 6 / 15 HR: 88 / 84 / 1	73	Mo/Hr: OADB:	6 / 17 86		Mo/Hr: He OADB: -19	ating Design 5		SADB Ra Plenum	Cooling 55.9 68.0	Heating 89.0 63.9
	Space Sens. + Lat.	Plenum Sens. + Lat	Net Total	Percent Of Total	Space Sensible	Percent Of Total		Space Peak Space Sens	Coil Peak Tot Sens	Percent Of Total	Return Ret/OA	68.3 70.3	63.9 48.4
	Btu/h	Btu/h	Btu/h	(%)	Btu/h	(%)		Btu/h	Btu/h	(%)	Fn MtrTD	0.1	0.0
Envelope Loads							Envelope Loads				Fn BldTD	0.3	0.0
Skylite Solar	0	0	0	0	0	0	Skylite Solar	0	0	0.00	Fn Frict	0.9	0.0
Skylite Cond	0	14 090	14.290	0	0	0	Skylite Cond	0	22.052	0.00			
Class Solar	334 637	14,200	14,200	11	359 771	30	Class Solar	0	-33,253	0.00	A10		
Glass Joial	02 584	0	02 584		01 166	30	Glass Goldi Glass/Door Cond	561 872	561 872	21.22	Ain	FLOWS	
Wall Cond	37,304	36,980	74 709	2	51,100	4	Wall Cond	-301,072	-301,072	14.85		Cooling	Heating
Partition/Door	-2 161	00,000	-2 161	ō	-2 092	0	Partition/Door	-22 208	-22 208	0.84	Diffuser	68,484	64,594
Floor	0		0	0	0	0	Floor	0	0	0.00	Terminal	76,094	71,771
Adjacent Floor	ō	0	ō	ō.	ō	ō	Adjacent Floor	ō	ō	0	Main Fan	84,549	80,226
Infiltration	519,203		519,203	17	84,280	7	Infiltration	-501,453	-501,453	18.94	Sec Fan	0	0
Sub Total ==>	981,992	51,259	1.033.252	34	583.341	48	Sub Total ==>	-1,311,475	-1,512,076	57.11	Nom Vent	6.945	6.945
											AHU Vent	8,574	8,574
Internal Loads							Internal Loads				Infil	5 533	5 533
Lights	235 502	58 876	294 378	10	235 502	20	Lights	0	0	0.00	MinStop/Rh	64,594	64,594
People	231,500	00,070	231 500	8	115 750	10	People	0	0	0.00	Return	89 538	85 216
Misc	202,391	õ	202.391	7	202.391	17	Misc	ŏ	õ	0.00	Exhaust	13,563	13,564
Sub Total>	660 303	58 876	728 269	24	553 643	46	Sub Total>	0	0	0.00	Rm Exh	543	543
Sub Total>	003,333	30,070	120,203	24	000,040	40	Sub Total ==>	0	0	0.00	Auxiliary	0	0
Ceiling Load	-62 771	62 771	0	0	-60 874	-5	Ceiling Load	-64.634	0	0.00	Leakage Dwn	7,609	7,177
Ventilation Load	0	0	803.281	27	0	ŏ	Ventilation Load	0	-777.121	29.35	Leakage Ups	8 455	8 455
Adi Air Trans Heat	0	-	0	0	0	0	Adi Air Trans Heat	0	0	0		0,100	0,100
Dehumid. Ov Sizing	-		0	0	-		Ov/Undr Sizing	-189.432	-189,432	7.15			
Ov/Undr Sizing	148 438		148 438	5	127 519	11	Exhaust Heat		177,988	-6.72	ENGINE		(e
Exhaust Heat	140,400	160,107	160,107	5	121,010		OA Preheat Diff.		0	0.00	ENGINE		10
Sup. Fan Heat			124,752	4			RA Preheat Diff.		-346,950	13.10		Cooling	Heating
Ret. Fan Heat		26,439	26,439	1			Additional Reheat		0	0.00	% OA	10.1	10.8
Duct Heat Pkup		-275,863	0	0							cfm/ft ²	1.70	1.61
Underflr Sup Ht Pku	P		0	0			Underfir Sup Ht Pkup		0	0.00	cfm/ton	335.45	
Supply Air Leakage		0	0	0			Supply Air Leakage		0	0.00	ft²/ton	196.81	
				1		:					Btu/hr·ft ²	60.97	-67.51
Grand Total ==>	1,737,052	83,589	3,024,537	100.00	1,203,630	100.00	Grand Total ==>	-1,565,540	-2,647,590	100.00	No. People	463	

	COOLING COIL SELECTION										AREA	S		HE	ATING COIL	SELECTIO	NC		
	Tota	l Capacity	Sens Cap.	Coil Airflow	Ent	er DB/W	/B/HR	Lea	ve DB	/WB/HR	G	ross Total	Glas	s		Capacity	Coil Airflow	Ent	Lvg
	ton	MBh	MBh	cfm	°F	°F	gr/lb	°F	°F	gr/lb			ft²	(%)		MBh	cfm	۴F	°F
Main Clg	252.0	3,024.5	1,727.8	84,207	70.3	60.3	63.8	51.6	46.9	41.4	Floor	49,606			Main Htg	-2,726.0	64,594	51.6	90.2
Aux Clg	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	Part	1,435			Aux Htg	0.0	0	0.0	0.0
Opt Vent	0.0	0.0	0.0	0	0.0	0.0	0.0	0.0	0.0	0.0	Int Door	0			Preheat	-623.1	8,574	-15.0	51.6
											ExFlr	0	_						
Total	252.0	3,024.5									Roof	6,400	0	0	Humidif	0.0	0	0.0	0.0
											Wall	19,492	6,563	34	Opt Vent	0.0	0	0.0	0.0
											Ext Door	0	0	0	Total	-3,349.1			

AHU 1

. .

Load Information

Add load profiles pictures

TOWER ANALYSIS

By Sebesta Inc.

Δ	lto.	rn		 10	-
	ILC		a		

	Maximum			Leaving Water Temperature Hours at each Temperature Range (°F) —										Hours	rs Minimum		um			
Plant / Tower Description	Temp	Mo	Hr C	Day	>100°	100-95	95-90	90-85	85-80	80-75	75-70	70-65	65-60	60-55	55-50	< 50°	Off	Temp	Мо	Hr Day
Air-cooled chiller - 04																				
90.1 Min Air Cooled Condenser	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	8,760	0	0	0 0
Water-cooled chiller - 02																				
Cooling tower for Cent. Chillers	82	7	15	1	0	0	0	0	80	282	509	242	152	0	0	0	7,495	59	4	13 1
Water-cooled chiller - 03 90.1-10 Min CCCooling Tower Axial Fan	87	7	16	1	0	0	0	60	386	496	83	0	0	0	0	0	7,735	71	8	10 10

ENERGY CONSUMPTION SUMMARY

By Sebesta Inc.

	Elect Cons.	Gas Cons	Water Cons.	% ofTotal Building	Total Building Energy	Total Source En ergy*
	(KWh)	(kBtu)	(1000 gals)	Energy	(kBtu/yr)	(kBtu/yr)
Alternative 1						
Primary heating						
Primary heating		1,149,043		42.5 %	1,149,043	1,209,519
Other Htg Accessories	10,652			1.3 %	36,354	109,073
Heating Subtotal	10,652	1,149,043		43.8 %	1,185,397	1,318,592
Primary cooling						
Cooling Compressor	70,606			8.9 %	240,979	723,009
Tower/Cond Fans	14,770		243	1.9 %	50,412	151,250
CondenserPump	4,912			0.6 %	16,766	50,303
Other CIg Accessories	4,689			0.6 %	16,005	48,020
Cooling Subtotal	94,978		243	12.0 %	324,162	972,582
Auxiliary						
Supply Fans	111,798			14.1 %	381,568	1,144,818
Pumps	18,351			2.3 %	62,632	187,914
Stand-aloneBase Utilities				0.0 %	0	0
Aux Subtotal	130,149			16.4 %	444,200	1,332,732
Lighting						
Lighting	120,900			15.3 %	412,633	1,238,023
Receptacle						
Receptades	99,029			12.5 %	337,984	1,014,054
Companyation						

MONTHLY UTILITY COSTS

By Sebesta Inc.

						Monthly U	tility Cost	s					
Utility	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Total
Alternative 1													
Electric													
On-PkCons. (\$)	3,115	2,822	3,368	3,110	4,666	5,169	5,177	5,111	4,340	3,503	3,091	3,012	46,482
Gas													
On-PkCons. (\$)	1,698	1,444	1,641	651	0	0	0	0	3	578	1,248	1,846	9,110
Monthly Total (\$):	4,814	4,265	5,009	3,761	4,666	5,169	5,177	5,111	4,343	4,081	4,339	4,858	55,592
Building Area = 55, Utility Cost Per Area = 1.0	056 ft² 1 \$/ft²												
Alternative 2 - 0° Rotation													
Electric	2.640	2.294	2 850	2,522	4.020	4 700	E 450	4 6 4 4	2 500	2.970	2 590	2.559	40 514
On-Proons. (5)	2,040	2,304	2,050	2,552	4,020	4,702	5,150	4,014	3,599	2,070	2,509	2,000	40,514
Gas	2 006	1 714	4 707	640	100	00	04	06	110	500	1.047	2 247	10 521
On-PRCONS. (5)	2,000	1,714	1,707	049	109	90	04	90	110	502	1,047	2,247	10,521
Monthly Total (\$):	4,646	4,098	4,638	3,182	4,129	4,792	5,233	4,710	3,708	3,458	3,636	4,806	51,035

Building Area = 55,056 ft² Utility Cost Per Area = 0.93 \$/ft²

ASHRAE Baseline 90.1-10 C

Yearly Time of Peak: 17(Hr) 7(Month)

Alternative 2

Equipment Description		Electrical Demand (kw)	Percent of Total (%)
Cooling Equipment			
Air-cooled unitary - 001		125.59	47.10
	Subtotal	125.59	47.10
Heating Equipment			
Boiler - 001		2.13	0.80
	Subtotal	2.13	0.80
Fan Equipment			
Sys 5: System - 005		2.05	0.77
Sys 4: System - 004		12.10	4.54
Sys 3: System - 003		14.79	5.55
Sys 2: System - 002		15.33	5.75
Sys 1: System - 001		18.30	6.86
	Subtotal	62.57	23.47
Miscellaneous			
BaseUtilities		0.00	0.00

The (original) Purpose...

Existing Buildings

Existing Buildings Calibrated Outputs

Total Utility Cost

Electrical Utility Cost

Natural Gas Utility Cost

Existing Buildings Calibrated Outputs

Figure 2.3: Average Monthly Usage from May 2008 to June2011.

Existing Buildings Calibrated Outputs

Onsite Observations

Implications:

Quantify savings Evaluate sizing Determine deficiency magnitude Environmental conditions Understand interactions

GUIDE DECISIONS

	ACTION	REQUIRED REACTION	Y (*)	N (*)	COMMENT	s	R (√)	с (*)				
2.	Adjust thermostat set-point to equal	Damper goes to minimum position.		ľ	VAV is wide of	คลุก						
	temperature.	Heating valve closed.	Ń									
		Record CFM.			1343 cfm (+0.	kal onthebs)						
		CFM is at minimum per TAB set-point.		Ø		-						
		Initial discharge temp.									7	
		Final discharge temp.							Zana Danian Flaur	Datas	,	
		Final upstream temp.	\checkmark		78°F				Zone Design Flow	Rates -	0.50	
F	Record issues VAV	abes not go to minneum.			Issue Log Item:				Min Design Flor	N:]	0.50	cfm/ft2
					Initial	Date			OA Flow/Perso	n:	39.0	cfm
								1	Minimum Flow	Ratio:	0.70	ratio

Table 9. Supply Duct Thermal Gain Results

	AHU-BB (1969)	AHU-BQ (1964)	AHU-BM (1960)	AHU-BD (1949)
Insulated	Yes	Yes	No	No
AHU Discharge temp	60.6	56.4	59.4	62.4
VAV Upstream temp	61.7	-	-	-
VAV Downstream temp	61.9	-	-	-
Diffuser Neck temp	62.4	-	-	66.3
Diffuser Face temp	65.7	59.8	65.8	67.5
Delta T	5.1	3.4	6.4	5.1

Duct Losses			
Duct Air Loss:		ratio	
Air Loss Type:	n/a		-
Duct Air Loss OA:	n/a	ratio	
Duct Zone:	- undefi	ined -	-
Supply Duct UA:	n/a	Btu/h-°F	
Duct Delta T:	2.00	°F (delta)	
Return Duct UA:	n/a	Btu/h-°F	
Hot Duct UA:	n/a	Btu/h-°F	
	n/2	9F (J-h-)	

As-Found Building Pressurization Diagram

Table 4.11

Outside Humi	dity		ERV co	ontrol ser	Other : sense	Other zone sensors				
			ERV-1	ERV-2	ERV-3	C201	B200			
Device Reading	32	-	37.7	37.7	36.5	38.6	36.8			
Weather.com	34	(Controls)	57.1	65.5	48.7	57.1	57			
Error	1.9		19.4	27.8	12.2	18.5	20.2			

Average Sensor Error: 19.6 % RH

Day Schedule	e Name: jo	пк рау	y scrie		
	Type: Fra	action	•	-	
Hourly Value	s				
Mdnt - 1:	0.0000	ratio	8-9 am:	1.0000	ratio
1-2 am:	0.0000	ratio	9-10 am:	1.0000	ratio
2-3 am:	0.0000	ratio	10-11 am:	1.0000	ratio
3-4 am:	0.0000	ratio	11-noon:	1.0000	ratio
4-5 am:	0.0000	ratio	noon-1:	1.0000	ratio
5-6 am:	0.0000	ratio	1-2 pm:	1.0000	ratio
6-7 am:	0.0000	ratio	2-3 pm:	1.0000	ratio
7-8 am:	0.0000	ratio	3-4 pm:	1.0000	ratio

4.2: Projected Maximum Wellfield Temperatures for 25 Years.

Energy modeling and retrocommissioning (RCx) can effectively share information to aid in building investigations and help guide decisions

Thank you for your time!

QUESTIONS?

This concludes the educational content of this activity

This concludes The American Institute of Architects Continuing Education Systems Course

John Bixler, PE

NV5, Inc

John.bixler@NV5.com

319.558.9299

