

AABC Commissioning Group AIA Provider Number 50111116

Converting CAV to VAV in Florida: What does this really mean?

Course Number: CXENERGY1707

Steve Harrell, CxA, CEM, SSRCx April 26, 2017

Credit(s) earned on completion of this course will be reported to AIA CES for AIA members. Certificates of Completion for both AIA members and non-AIA members are available upon request. CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product.

Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

This course is registered with AIA

Copyright Materials

This presentation is protected by US and International Copyright laws. Reproduction, distribution, display and use of the presentation without written permission of the speaker is prohibited.

Smith Seckman Reid

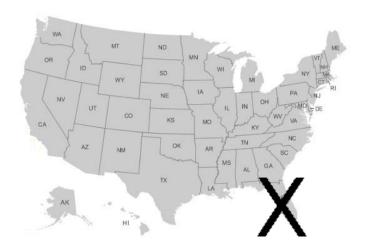
Course Description

This presentation defines the steps necessary to truly convert all non-sensitive zones in a hospital facility from constant air volume control to variable air volume control and the procedures necessary to comply with AHCA requirements and receive Agency approval in the state of Florida. A case study will be presented highlighting St. Joseph's Hospital North where this conversion has occurred and been approved by AHCA. Energy benefits and complete results will be discussed in detail.

Learning Objectives

At the end of the this course, participants will be able to:

- 1. Learn how the AHCA approves variable air volume control in Hospitals in nonsensitive zones.
- 2. Learn how air changes per hour does not equal variable air volume control.
- 3. Understand the significance of the energy impact of true variable air volume control.
- 4. Learn about energy management best practices for existing hospitals.


CRITICAL SPACES

 ASHRAE Std 170-2013, 7.1 allows ACH to be reduced during unoccupied times in CRITICAL SPACES

NON CRITICAL SPACES

 ASHRAE Std 170-2013, 7.1 allows VAV systems as long as pressure relationships and minimum ACH are maintained in NON-CRITICAL SPACES during ALL times.

March, 2012

Prior to March 15, 2012

2006 AIA/FGI Guidelines

AHCA required Constant Air Volume only!

<u>After</u> March 15, 2012

FGI Guidelines were adopted with the 2010 Florida Building Code

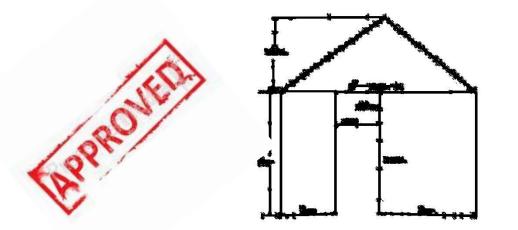
AHCA now <u>approves</u> Variable Air Volume

300-600 Ft. 150-300 Ft. 0-150 Ft.

17 Zones/Space Types Now Eligible for VAV

		rameters			
Function of Space	Pressure Relationship to Adjacent Areas (n)	Minimum Outdoor ach	Minimum Total ach	All Room Air Exhausted Directly to Outdoors (j)	Air Rec by M Room l
SURGERY AND CRITICAL CARE					
Classes B and C operating rooms, (m), (n), (o)	Positive	4	20	N/R	ľ
Operating/surgical cystoscopic rooms, (m), (n) (o)	Positive	4	20	N/R	2
Delive <u>ry room (Caesarean) (m), (n), (o)</u>	Positive	4	20	N/R	Ŋ
Substerile service area	N/R	2	6	N R	ľ
Recovery room	N/R	2	6	J/R	Ŋ
Critical and intensive care	Positive	2	6	N/R	1
Wound intensive care (burn unit)	Positive	2	6	N/R	1
Newborn intensive care	Positive	2	6	N/R	1
Treatment room (p)	N/R	2	6	N/R	Ν
Patient room (s)	N/R	2	6	N/R	EDUCATION CATION OF THE OF

CAV to VAV Measures will require AHCA Approval


Standup Review

CV to VAV Measures will require AHCA Approval

Standup Review

Construction Drawings

The Significance?

Fan Laws – The Power of Cube! $HP_2 = HP_1 (CFM_2/CFM_1)^3$

If the average new variable CFM is $\frac{1}{2}$ the constant old CFM, a 40 Horse Power Fan could be reduced to 5 Horse Power.

That translates to \$16,971 in savings

for 1 fan motor per year!

Fan Energy

"A recent estimate places the worldwide energy use of fans at about <u>23%</u> of the world's total energy consumption."

Select Fans Using Fan Total Pressure To Save Energy

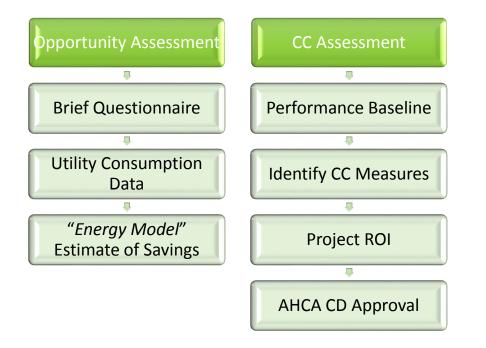
By DE

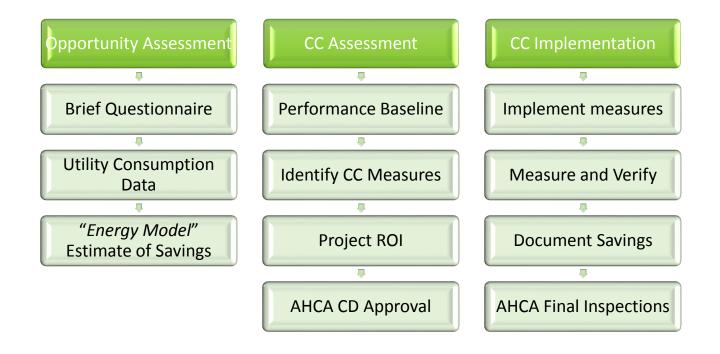
John Cermak, Ph.D., P.Eng., Member ASHRAE; and John Murphy, Ph.D., Life Member ASHRAE ASHRAE Journal, July 2011

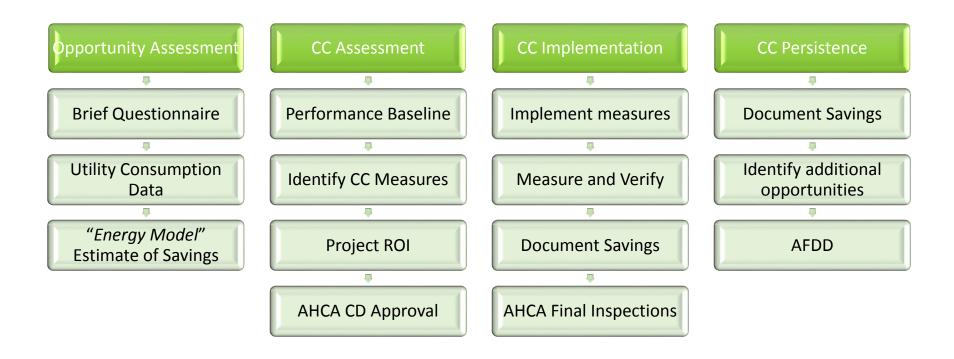
The Solution

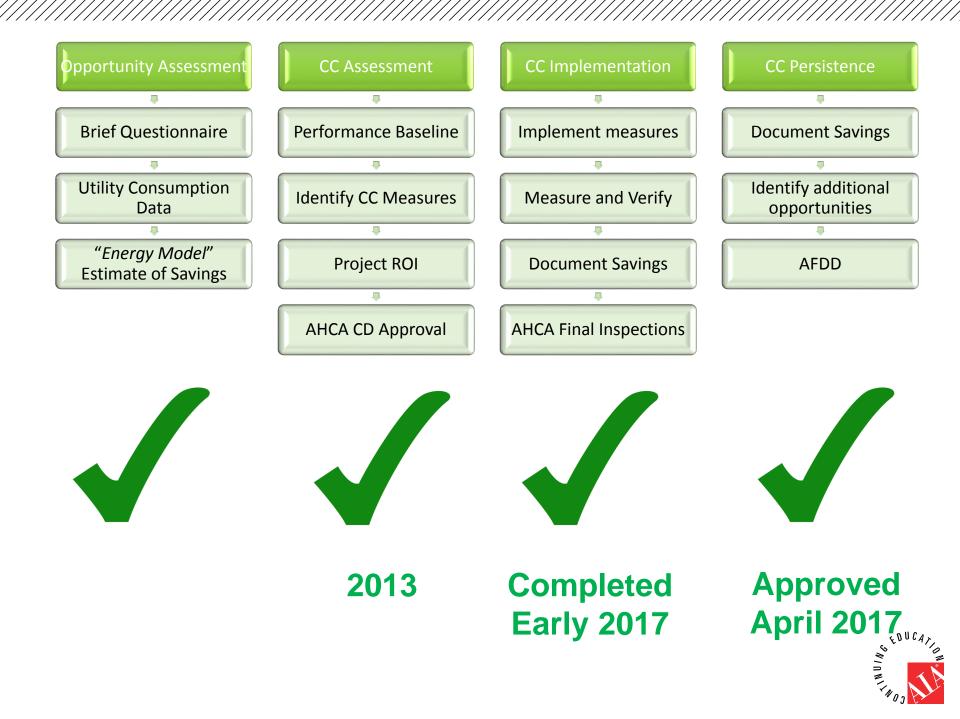
Approaches

- ✓Audits
- ✓ Re-Commissioning
- ✓ Retro Commissioning
- ✓On-going Commissioning
- Monitoring Based Commissioning
- Automated Commissioning
- ✓Continuous Commissioning®


A Process/Plan to Get Started







Baycare Health Systems ST. Joseph's North Hospita 411,000 ft.²

Hospital Entrance

St Joe's Energy Star Score 4

St Joe's North Energy Use Index 314

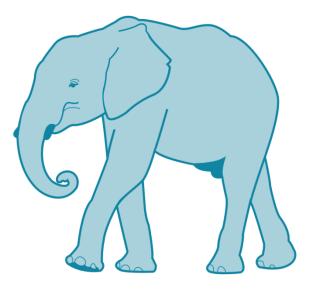
Energy Star/Portfolio Manager EUI 196

PortfolioManager®

Technical Reference

Broad Category	Primary Function	Further Breakdown (where needed)	Source EUI (kBtu/ft²)	Site EUI (kBtu/ft²)	Reference Data Source - Peer Group Comparison	
	Ambulatory Surgical Center		155.2	63.0	CBECS - Outpatient Healthcare	
	Hospital	Hospital (General Medical & Surgical)*	389.8	196.9	CBECS - Inpatient Healthcare	
Usellheeve		Other/Specialty Hospital				
Healthcare Medical Office*		116.7	44.4	CBECS - Medical Office		

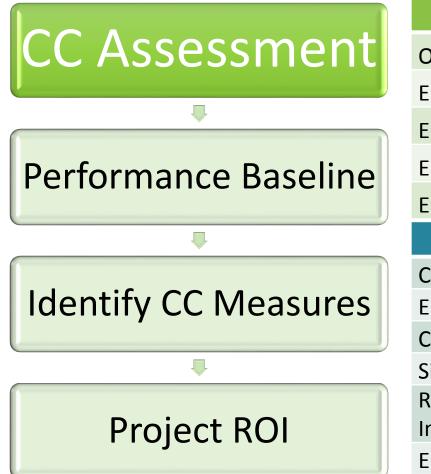
Energy was costing \$4.02 ft.²



CC Measures Identified

- Boiler Plant
 - Reduce steam pressure
 - Improve HHWST reset sequence
- Chiller Plant
 - Reset CHWST setpoint
 - Improve CWST reset sequence
 - Improve Cooling Tower staging
- Air Handling Units
 - Convert selected AHUs from CAV to VAV
 - Improve SAT reset sequence
 - Reduce minimum outside airflow
 - Time of Day scheduling
 - Reset DSP to AHUs converted to VAV
- Terminal Units
 - Unoccupied space temperature setback
 - Dual-max VAV box controls

NO CAPITAL INVESTMENT



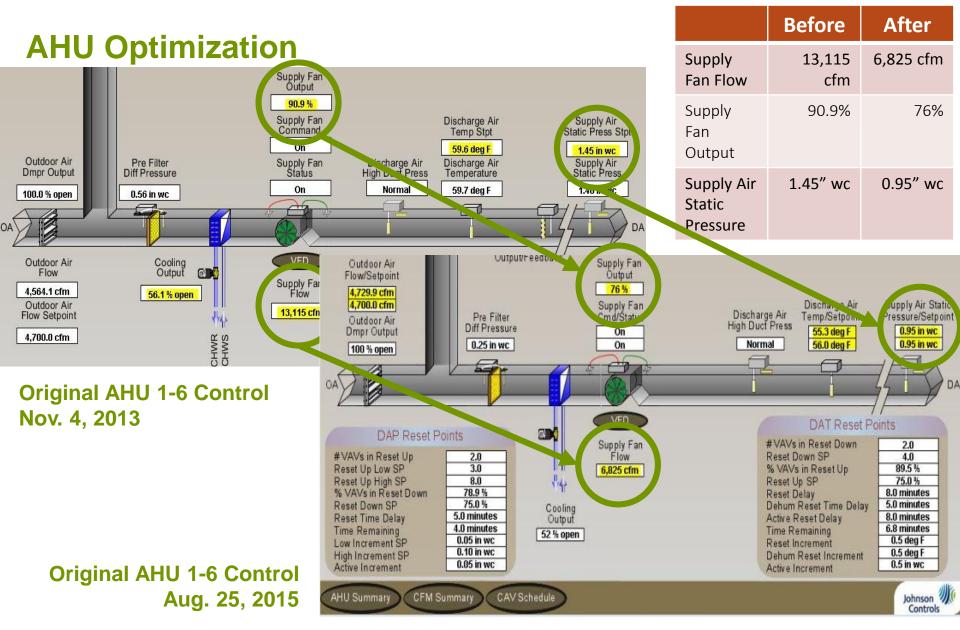
Phase I Assessment – AHCA

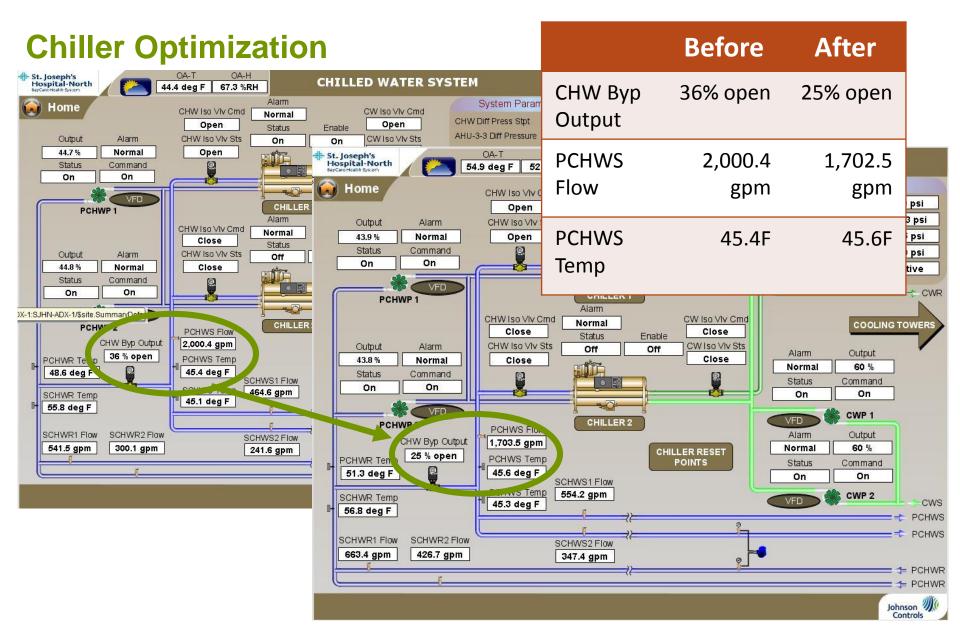
Energy, Cost & GHG Emissions Savings Estimates

	CC Assessment	AHCA-Approved Design
Potential Annual Electricity Use Savings	3,993,606 kWh/yr	3,170,706 kWh/yr
Potential Annual Natural Gas Savings	177,075 Therms/yr	175,438 Therms/yr
Potential Annual Site Energy Savings	31,334 MMBtu/yr	28,362 MMBtu/yr
Potential Annual Energy Cost Savings	\$395,863/yr	\$334,914/yr
Potential Annual Greenhouse Gas Emissions Reduction	3,162 MtCO2e/yr	2,696 MtCO2e/yr

Phase I Assessment - Review

2012-13 FINDINGS				
O&M Items	136			
Energy Expenditure	\$1,654,140			
Energy Usage	128,995 MBtu/yr			
Energy Use Intensity	314 kBtu/ft ²			
Energy Star Score	4			
POTENTIAL SAVINGS				
CC Opportunities	12			
Energy Savings	19.5%			
Cost Savings	\$334,914			
Simple Payback	1.41 years			
Return On				
Investment	71.10%			
Energy Star Target				



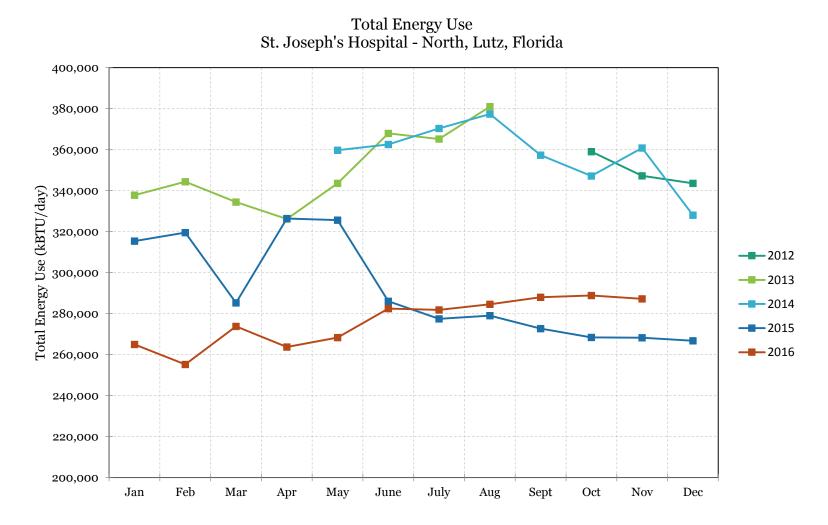


- Air Quality/Patient Comfort
- ✓ Solved condensation problems
- Resolved air infiltration problem on back loading dock
- ✓ Eliminated simultaneous heating and cooling
- Identified Building Envelope issues and consulting on plan to resolve and return patient rooms to usability

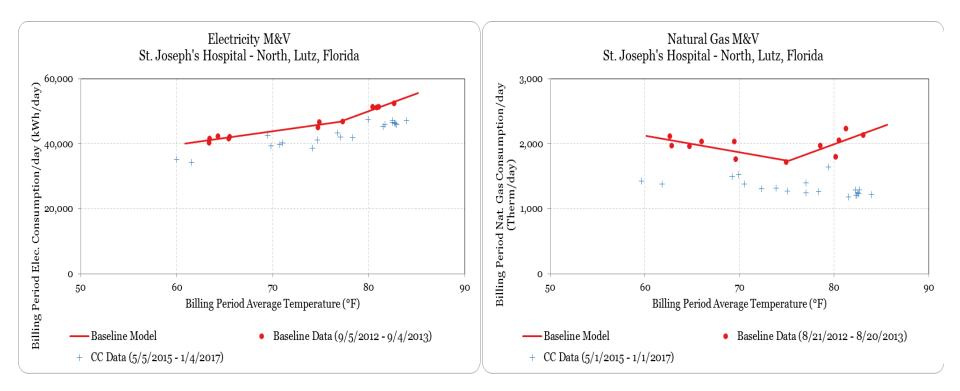
- Benefits
- ✓ AHU's
 - Static reset
 - Discharge air reset
 - Night setback
- ✓ VAV terminal boxes
 - CV to VAV adjusting minimum flow
- ✓ Chiller Optimization
 - Less bypass
 - Reduced flow
 - Reduced tonnage
- ✓ Heat Exchanger Optimization

Chiller Optimization

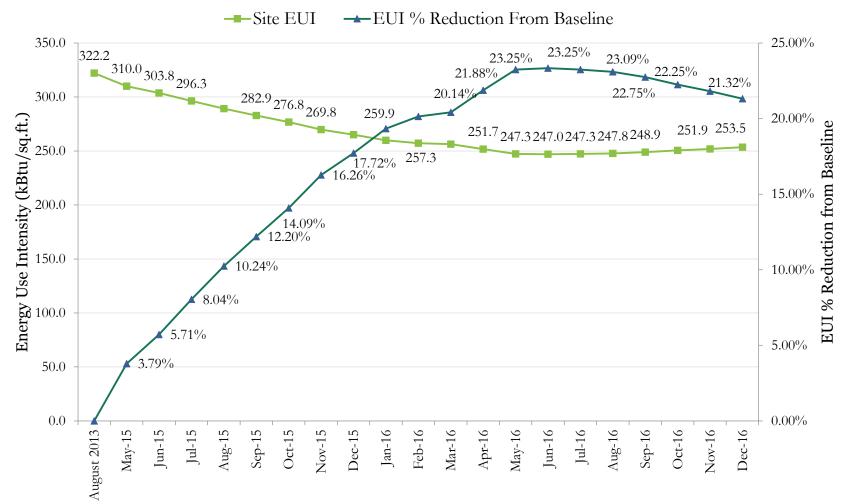
Home				Before	After
				Delote	Aitei
Chiller 1 Parameters	Circuit 1 Parameters	Circuit 2 Parameters	Tonnage	652.0 tons	383.0 tor
H1 Chilled Water Stpt 45.0 deg F	Cir1 Comp Running No	Cir2 Comp Running Yes			
H1 Current Limiting Stpt 100.0 %	Cir1 Comp Disch Refrig T 68.5 deg F	Cir2 Comp Disch Refrig T 96.6 deg F			
H1 CHW Temp Entering 52.9 deg F	Cir1 Cond Sat Refrig Temp 64.9 deg F	Cir2 Cond Sat Refrig Temp 73.9 deg F			
H1 Chilled Water Flow Yes	Cir1 Cond Sat Refrig Press -7.0 psi	Cir2 Cond Sat Refrig Press -2.2 psi			
H1 CHW Temp Leaving 44.8 deg F	Cir1 Evap Sat Refrig Temp 52.8 deg F	St. Joseph's Hospital-North BayCare Health System	CHILLER 1	PARAMETERS	
H1 CHW Flow GPM	Cir1 Evap Sat Refrig Press -6.8 psi	🙀 Home			
H1 Cond Water Flow Yes	Cir1 Bearing #1 Temp 67.6 deg F	Home			
H1 Evaporator Approach 4.1 deg F	Cir1 Bearing #2 Temp 67.9 deg F	Chiller 1 Parameters	Circuit 1 Paramete	rs Ci	rcuit 2 Parameters
H1 Condenser Approach 2.2 deg F	Cir1 Oil Pressure Differential 0.0 psi			Cir2 Comp 5	
H1 CW Temp Entering 67.9 deg F	Cir1 IGV Position 0.0 %	CH1 Chilled Water Stpt 44.0 deg F	Cir1 Comp Running		Disch Refrig T 66.6 d
H1 CW Temp Leaving	Cir1 Comp Power 0.0 kW	CH1 Current Limiting Stpt 100.0 %	Cir1 Comp Disch Refrig T	50.5 ucg1	
H1 CW Flow GPM 2,101.0 gpm	Cirl Power Factor -0.5	CH1 CHW Temp Entering 49.5 deg F	Cir1 Cond Sat Refrig Temp	TEIO GOGT	
H1 Total Power 250.8 kW	Cir1 Comp Current Draw 0.0 %	CH1 Chilled Water Flow Yes	Cir1 Cond Sat Refrig Press	Ein bai	
H1 Tons Active 652.0 tons	Cirl Current Imbalance 0.0 %	CH1 CHW Temp Leaving 43.6 deg F	Cir1 Evap Sat Refrig Temp	40.8 deg F Cir2 Evap S	at Refrig Temp 44.8 d
H1 Efficiency KW/Ton 0.38 kW/Ton	Cir1 Volt imbalance 0.0 %	CH1 CHW Flow GPM 1,560.0 gpm	Cir1 Evap Sat Refrig Press	-8.8 psi Cir2 Evap S	at Refrig Press -8.2
acer Comm State	Cin. ms 0.0 A	CH1 Cond Water Flow Yes	Cir1 Bearing #1 Temp	109.6 deg F Cir2 Bearing	g #1 Temp 66.2 d
		CH1 Evaporator Approach 2.8 deg F	Cir1 Bearing #2 Temp	97.7 deg F Cir2 Bearing	g #2 Temp 66.9 d
		CH1 Condenser Approach 2.9 deg F	Cir1 Oil Pressure Differential	27.5 psi Cir2 Oil Pres	ssure Differential 0.0 I
		CH1 CW Temp Entering 66.3 deg F	Cir1 IGV Position	34.0 % Cir2 IGV Po:	sition 0.0
		CH1 CW Temp Leaving 69.1 deg F	Cir1 Comp Power	195.6 kW Cir2 Comp F	ower 0.0 F
W System Chiller 2 System O	Overview	CH1 CVV GPM	Cir1 Power Factor	70.1 Cir2 Power F	Factor -2.
		CH1 Total Power 195.6 kW	Cir1 Comp Current Draw	39.6 % Cir2 Comp C	Current Draw 0.0
		CH1 Tons Active 383.0 tons	Cir1 Current Imbalance	9.5 % Cir2 Current	timbalance 0.0
		CH1 Efficiency kW/Ton 0.51 kW/Ton	Cir1 Volt imbalance	0.0 % Cir2 Volt imt	balance 0.0
		Tracer Comm State	Cir1 Amps	325.1 A Cir2 Amps	0.0


CHW System

RESULTS

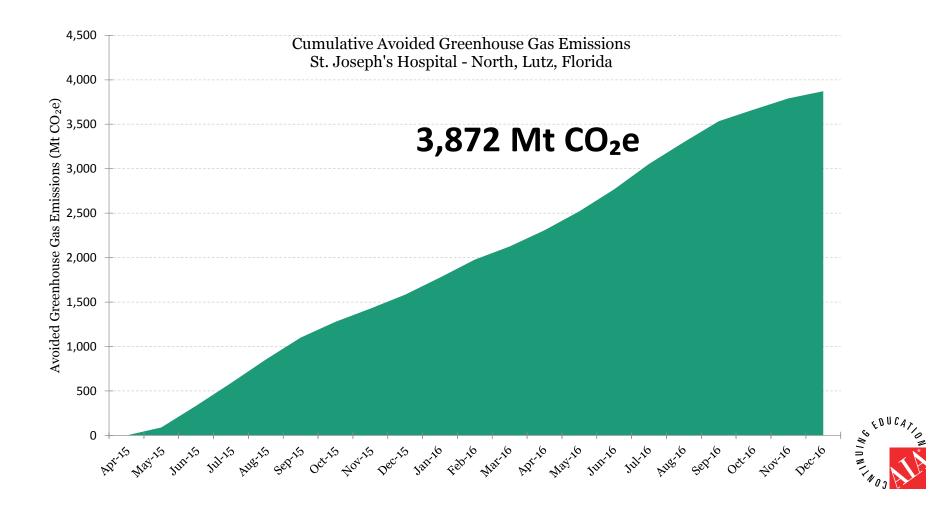


Results -- 2012 thru December 2016

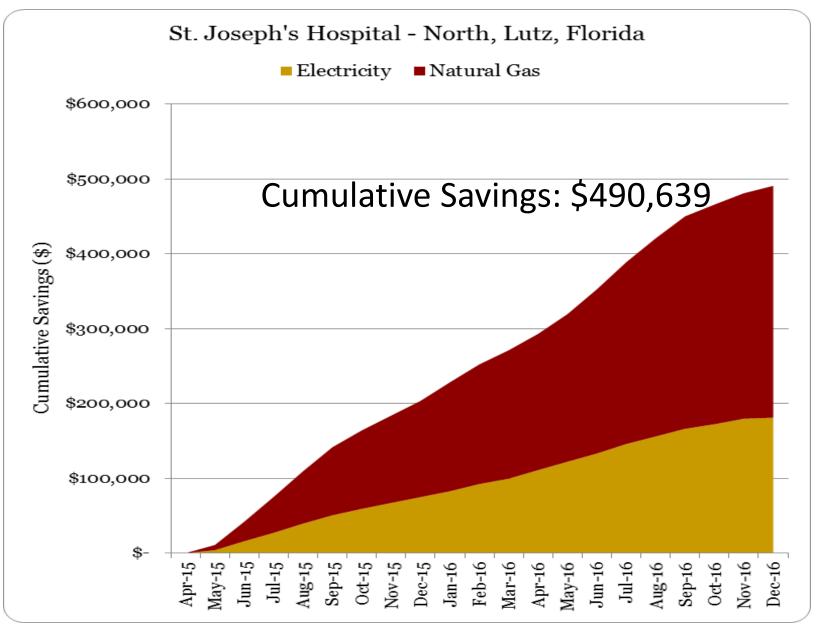


Results -- Consumption Reduction

Results -- EUI 322 >253.5


EDUCATION IN THE REAL PROPERTY OF THE REAL PROPERTY

Results -- Energy Star Score 4 > 19



Greenhouse Gas Reduction

Results -- \$\$\$\$ -- thru December 2016

Final Analysis – So Far!!

Energy Model Savings Projections

- ✓ Cost Savings \$334,914
- ✓ Simple Payback 1.41 years
- ✓ ROI 71.10%

Latest 12 Months Annual Savings

- ✓ Cost Savings \$309,000
- ✓ Simple Payback 1.60 years
- ✓ ROI 62.50%

Final Inspection and Approval !!

Staff Survey Results

- Comfort
- Project Awareness
- What's important?
 - Environment

• Energy

• Dollars

This concludes The American Institute of Architects Continuing Education Systems Course

Steve Harrell, CEM, CxA Principal SSRCx 615-686-8438 <u>sharrell@ssr-inc.com</u>

