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Credit(s) earned on completion of CES for continuing professional

this course will be reported to AIA education. As such, it does not

CES for AIA members. Certificates of include content that may be

Completion for both AIA members deemed or construed to be an

and non-AIA members are available  approval or endorsement by the

upon request. AlA of any material of construction
or any method or manner of
handling, using, distributing, or
dealing in any material or product.

Questions related to specific materials, methods, and
services will be addressed at the conclusion of this
presentation.
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Course
Description

Electrification of building heating and cooling processes, coupled
with clean electricity supply, is the predominant path forward to
sustainable and economic building energy supply for the long term.
This presentation will explain the Stanford Energy System
Innovations (SESI) project and the additional enhancements
Stanford is studying to complete its full transformation to an
affordable and sustainable energy system in less than 10 years.
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Learning
Objectives

At the end of the this course, participants will be able to:

1. Learn how to electrify building heating & cooling processes efficiently and
economically.

2. Learn about the benefits of both hot and cold thermal energy storage in an
electrified CHC building energy scheme and how to model, design, and operate a
CHC system.

3. Learn why thermal energy storage is a larger opportunity for grid electricity
demand management than batteries or other forms of electricity storage.

4. Learn why all the fuss should be about Total Energy Microgrids, not Electricity
Microgrids.
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Building Energy- Scale

Energy use in developed countries

» Electricity, Heating, and Cooling of structures
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Pathways for Sustainable Building Energy

Carbon Capture & Storage
ca rbO n F u el Less efficient, much higher cost, not distributable
Sustainable Bio-Fuel

Not scalable, usually higher cost

Electrification + Renewable Electricity

Most efficient, lowest cost, scalable, distributable, flexible, sustainable

4

Less efficient, higher cost, not distributable
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Heat Pump is Key to Building Electrification

of gas = 1 KWH = 3,413 btu of heat
(50% efficient grid gas power plant)

Electric
Resistive
of gas = 3,413 btu of heat
Gas (85% efficient heater)

of gas = .17 (120F) to .3 (160F) KWH
= 3,413 btu of heat
(50% efficient grid gas power plant)

4 Electric Heat
Pump
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Assessing Heat Recovery Potential

A B C D E F G
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Assessing Heat Recovery Potential- Stanford Example

Thermal Overlap
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Annual Heat Recovery Potential

Use Heat Pump first for: 1) Heat Recovery, then 2) Heat Extraction from Ground or Water

mmbtu

Stanford University
Heat Recovery Potential (2015)
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Types of Building Energy Supply Systems

Separate Heat & Power Combined Heat & Cooling
(CHC)

Combined Heat & Power
(CHP) (SHP)

Steam

Boiler or
€ Hot Water \

HEAT
Genera tor
Heat
f\ Recover '
Steam or é/cml.ler

Steam or

Cogenera tion Electric Electric
Unit Powered >| coounG € Powered
Chillers Chillers
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Basic Overall System Components

1. Heat Pump (aka Heat Recovery Chiller)
2. Chiller
3. Boiler/Hot Water Generator

Optional but highly desirable and cost effective

4. Hot thermal energy storage (typically water)
5. Cold thermal energy storage (typically water)

6. Model Predictive Control software for planning, design, and operation
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Stanford Central Energy Facility

200 | h\ { ’
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L Relcovery \ : 88%
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Hot and Cold Thermal Energy Storage

Reduces Capital & O&M cost
Increases system efficiency (6% more heat recovery)
Reduces electricity peak demand by 17% (36 v 43 MW) 0ts,

Provides equivalent of 7 MW electricity storage
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Model Predictive Control Software

Increases system efficiency
Reduces electricity peak demand and total cost
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Benefits of Model Predictive Control

Manual Operation

Computer Operation

Stanford Peak Daily Electrical Demand (2016) Operators Dispatch
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Stanford Peak Daily Electrical Demand (2016) EOS Dispatch
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» 2016 full year Operators vs. Computer simulation conducted

» Benefits of computer optimization:

» Reduces peak demand on grid by 7.3 MW (35.9 MW vs 43.2MW)(17%)

» Saves $500,000 per year (10%) in CEF electricity cost

» Functions as ‘autopilot’ to run CEF

AP

n
e %
6-7

WUy,



LI I s s

Stanford Energy System Innovations (SESI) Components

Heat Recovery New thermal system
(Steam to hot water )

(District level application)

High-voltage substation

Renewable Energy Portfolio
(New )

( Purchased electricity)

Advanced Energy
Management Software

( Patented )
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Enhancements under study

Stanford University
Heat Recovery System

Deposit heat in summer
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Stand Alone vs. District Energy

All concepts work at stand alone building level- residential on up

But application via District Energy even better
Application in new development even easier and more efficient

Technology Roadmap

Energy-efficient Buildings: Heating and Cooling Equipment
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Reliability & Resiliency

“The electrical grid is far more reliable out west than back east...we have outages all
the time and can’t rely on the grid for something as essential as heating in winter”

“Electrification & Heat Recovery only works in mild climates like Stanford’s...it won’t
work in cold climates like the Midwest or East”

SEPTEMBER 12, 2016

Heat Recovery (CHC) system

EIA data show average frequency and duration of electric has 4 sources of winter time
power outages heating energy:

Average electric power service interruptions per customer by utility type, 2015 Ci.T 1. EIeCtr|CIty (prlmary)

frequency (number of instances) total duration (minutes) 2. Thermal Storage (backup)
all utility types all utility types 3. l\!atl:"'al Gas (baCkup)
without major with major without major with major 4, quU|d Fuel (backup)
events events events events

SHP and CHP systems
only have 2 sources:

1. Natural Gas (primary)
2. Liquid Fuel (backup)

municipal municipal

investor-owned investor-owned

co-op co-op

0 1 2 3 0 60 120 180 240 300

Annual Electric Power Industry Report
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Electrification makes sense in all climates
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Stanford University Heat Recovery Potential

Cooling Load = 60,265,616 Ton-Hr/723,187 MMbtu

\A
Heat Recovery
Potential

Heating Load = 610,205 MMbtu

University of lllinois (Urbana-Champaign) Heat Recovery Potential

Cooling Load = 83,019,213 Ton-Hr/996,231 MMbtu

[

"~ Heat Recovery
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Heating Load = 1,657,534 MMbtu
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Stanford University (Redwood City Admin Campus) Heat Recovery Potential
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Heating Load = 10,701 MMbtu

University of California (Davis) Heat Recovery Potential
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Total Energy Micro-grid...thermal before electric

Stanford energy micro-grid

electrical micro-grid thermal micro-grid
sttt
M LT BRI e
S E o

distributed electricity resources electrici central thermal energy facility

electricity storage
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Planning for Building Electrification

1. Develop ‘8760’ tables of annual hourly estimates for building(s)
electricity, heating/hot water, and cooling loads

2. Use simple ‘real time’ overlap comparison of hourly heating and
cooling loads to see minimum heat recovery potential

3. Use MPC software such as Stanford’s CEPOM or JCI’s CPO for detailed
planning and design of system and reveal of actual heat recovery
potential, cost, GHG, water use, etc.

4. System can function without thermal energy storage and MPC but
addition of these increase economics and efficiency by 20% or more

5. MPC models incorporate electricity and gas cost projection tables,
grid greenhouse gas factors, and water use factors and costs to
reveal total economics, efficiency, and sustainability results for
different system configurations for comparison to standard HVAC
systems or combined heat & power.
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Other Considerations

1. Electrification not as desirable from sustainability perspective if no source of moderate
to clean electricity (<800 Ib/MWh GHG) is available...much of country is already there
and once coal use goes down all will be there as 800 Ib/MWh is about equivalent to an
all-gas generation fleet

2. 100% clean electricity =
100% clean building energy

3.  Electrification not as
economical if gas is dirt o
cheap (<$3/MMBTU
burner tip) and electricity
is very expensive
(>$100/MWh
delivered)...and vice versa ~ { =

4. Water savings is very :
substantial with heat
recovery as 50% or more of
current evaporative cooling
tower use is eliminated S T

5. Compare overall long term
life cycle cost of options

$2,000 1 On-site Gas Cogeneration Options Grid Power Options Grid + PV Actual

ul Electricity
i Natural Gas
52

s wo&m
46 £ M Capital

§  Water
40 =

E +GHG

]
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