

Implementation of a Strategic Campus Sustainability and Energy Plan

Course Number: CXENERGY1903

Nate Boyd, P.E., BEAP, CPMP, LEED AP University of Central Florida Wade Conlan, P.E., CxA, CPMP, LEED AP Hanson Professional Services, Inc.

April 17, 2019

Implementation of a Strategic Campus Sustainability and Energy Plan

AT THE UNIVERSITY OF CENTRAL FLORIDA

AIA Disclaimer

Presenters

Nate Boyd, P.E., BEAP, LEED AP

Associate Director, Energy Services University of Central Florida

- BS Mechanical Engineering at UCF
- 21+ years BAS industry experience
- CSE 40 Under 40
- UCF MAE Industry Advisory Board
- Valencia EMCT Industry Advisory Board
- Former City of Orlando Energy Manager

Wade Conlan, P.E., CxA, LEED AP

Commissioning Discipline Manager Hanson Professional Services

- BS Architectural Engineering at PSU
- 23+ years Mechanical Design & Cx
- CSE 40 Under 40
- Chair of UCF MAE Industrial Advisory Board
- UCF Projects include Tri-gen Study, Multiple Bldg. Audit, CREOL Expansion, Energy Plant RetroCx and DEP IV Design Reviews

Agenda

- University Background
- University Plans and Progress
- Tools for Achieving the Plan
 - Commissioning
 - Existing Building Projects
- Carbon Neutrality
- Smart Grid
- Renewables
- Results
- Conclusions

The University of Central Florida

\$32 million per year in utilities 793 million kBTU per year

With more than 68,000 students, UCF is the biggest university in Florida, and one of the biggest in the nation. But being big goes beyond our size. Big is diverse and inclusive. Big is promising and powerful. Big attracts the brightest minds and boldest opportunities. So go on, Knights — dream big. Because big is just the beginning.

1,440 Acre Main Campus 180 Buildings

Utilities & Energy Services'

Vision.

To obtain energy efficient buildings through the production, delivery, optimization, and management of safe, reliable, and efficient utility and energy systems to reduce the university's impact on the environment.

Collective Impact Strategic Plan

- Innovate academic, operational, and financial models to transform higher education.
- Define and achieve favorable sustainability comparison against other analogous and aspirational universities.

Smart Infrastructure

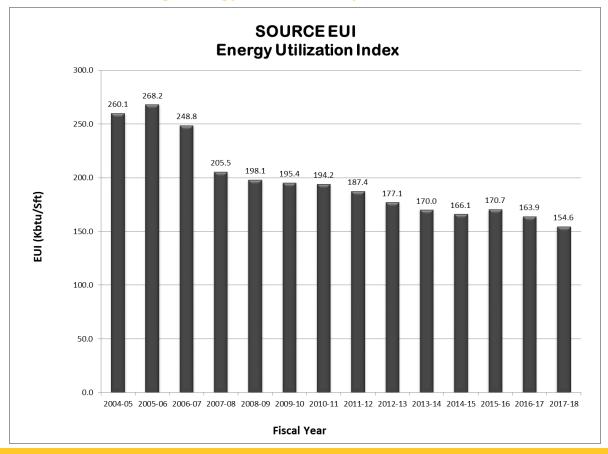
- Building automation
- GIS and mapping
- Billing and metering
- Analytics

Energy Services

- Energy audits
- modernization
- projects
- High performance buildings
- Renewables
- Commissioning
- Retro commissioning

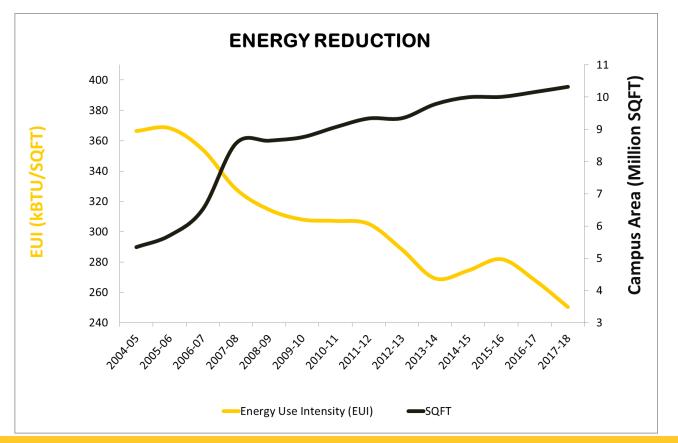
Utility Production & Distribution

- Electric
- Chilled water
- Natural gas
- Water & waste water


Our Departmental **Structure**.

Energy Plans & Policies

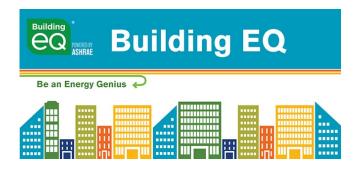
- Collective Impact Strategic Plan
- Campus Master Plan
- Climate Action Plan
 - American College and University President's Climate Commitment
- Energy & Sustainability Policy



Progress To Date _____ A decreasing Energy Use Intensity

Progress To Date

A decreasing Energy Use Intensity


Innovative Operation & Financial Models

Combined Heat & Power Plant passes 200,000 MWh of production

District Energy Plant IV opens

High Performance Buildings

23 and counting

Wellness Expansion

LEED® BD+C LEED 2.2

LEED Gold®

UCF Performing Arts Center LEED® BD+C LEED 2.2 LEED Gold®

UCF Biomedical Science Building LEED® BD+C LEED 2.2 LEED Silver®

UCF Student Union Expansion LEED® BD+C LEED v4 Registered

UCF John C. Hitt Library Expansion LEED® BD+C LEED v2009 Registered

UCF Global

LEED Gold®

LEED® BD+C LEED v2009

Expansion LEED® BD+C LEED v2009 Registered

UCF Trevor Colbourn Hall LEED® BD+C LEED v2009 Registered

UCF Classroom I LEED® O+M LEED v4 Registered

UCF Downtown LEED® BD+C LEED v4 Future

UCF Dining Facility LEED® BD+C LEED v4 Registered

UCF District Energy Plant IV LEED@ BD+C LEED v2009 LEED Gold®

UCF Interdisciplinary Research & Incubator LEED® BD+C LEED v2009 Registered

UCF Alumni Center LEED® O+M LEED v4 LEED Gold®

UCF Physical Science ш LEED® BD+C LEED 2.2 I FED Gold®

UCF Greek Life Center LEED® BD+C LEED v2009 I FED Silver®

UCF Band Building

LEED® BD+C LEED v4

Registered

UCF College of Medicine LEED® BD+C LEED 2.2 I FED Silver®

UCF Morgridge Intl Reading Center LEED® BD+C LEED 2.2 I FED Gold®

Baug / Shinama

UCF Wayne Densch Center for Student-Athlete Leadership LEED® BD+C LEED v2009 LEED Gold®

UCF Visitor and UCF Academic **Parking Information** Village Phase II LEED® BD+C LEED 2.2 LEED & BD+C LEED v2009 LEED Gold® LEED Silver®

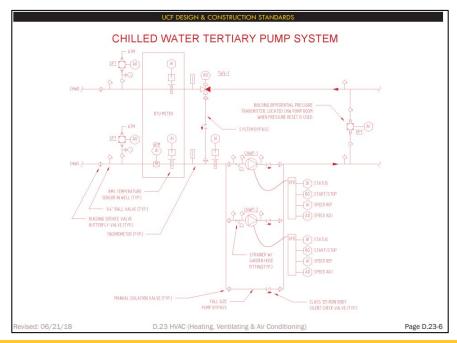
UCF Classroom II LEED® BD+C LEED v2009 LEED Gold®

UCF Greek House A LEED for Homes LEED LEED Gold®

UCF Greek House B LEED for Homes LEED LEED Gold®

LEED® BD+C LEED 2.2

LEED Silver®



UCF Public Safety LEED® BD+C LEED 2.2 I FED Gold®


Building Codes

- Design, Construction & Renovation Standards
- BAS specifications ASHRAE Guideline 13 & 36 based
- LEED Gold minimum

BUILDING OPERATIONS AND MAINTENANCE

See Bur

C. S. S. S. S. A REAL PROPERTY AND A REAL

and the second second

A MARINA SALANA

TONITAS .

Sarah Sarah

Sumanum 1 LONGING MALES

S. Marmite S. Statistics

LEED

DERSHI

NUMBER OF ME

Brank MAR Bar the real of the real of

LEED GOLD

- ASHRAE Standard 202-2013
 - (Revising to '18)
- ASHRAE Guideline 0
- ACG Cx Guidelines

STANDARD

ANSI/ASHRAE/IES Standard 202-2018 (Supersedes ANSI/ASHRAE/IES Standard 202-2013) Includes ANSI/ASHRAE/IES addenda listed in Appendix R

Commissioning Process for Buildings and Systems

See Informative Appendix 8. for ASHIVAE, IES, and ANSI approval dates.

The Source is used in our continuum meteration by a Source State Source of Project Connected and the Source Sourc

The lases actions of an ARHAM Standard may be purchased from the ARHAM selection (overwahres org) or from ARHAM Concomer Service, 1971 Tellis Cricks, NJ, Alexins, GA 1920-2023, E-mail ordeniziotanee org Rax EM5335-1255, Tellishone 404-636-6400 (worklowide), or all the E-6805-527-4723 (for orden in US and Canada, For reprint pernetation, pit two and share applementation.

© 2018 AGHRAE ISSN 1041 2036

ACG COMMISSIONING GUIDELINE

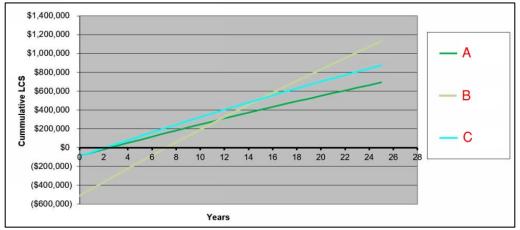
For Building Owners, Design Professionals and Commissioning Service Providers

Required for all projects

Owner's Project Requirements

OWNER PROJECT REQUIREMENTS

UCF 586 DOWNTOWN CENTRAL ENERGY PLANT January 30, 2018 Rev 2

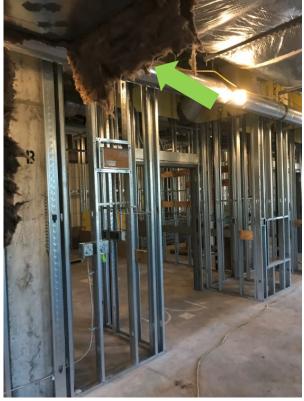


Commissioning / Energy Services Group

• LCCAs

	Chiller Selections							
Performance Data	Florida Baseline	A	В	С				
		Centrifugal	Mag Bearing	Centrifugal				
Full Load Efficiency (KW/ton)	0.585	0.5522	0.5568	0.535				
Part Load efficiency NPLV (KW/ton)	0.38	0.3625	0.3383	0.341				
Condenser Pressure Drop (Ft/H20)	20	16.2	11.6	21				
Evaporator Pressure Drop (Ft H20)	20	9.73	14	21				
Costs per machine (\$)								
Total costs for 6 chillers (\$)								
Simple Payback (yrs)		2.5	6.9	2.1				
Cumulative Life Cycle Savings (\$)		\$691,753	\$1,128,035	\$877,532				
Savings to Investment Ratio (SIR)		8.8	3.2	10.4				
Adjusted Internal Rate of Return (AIRR)		12.40%	7.90%	13.10%				

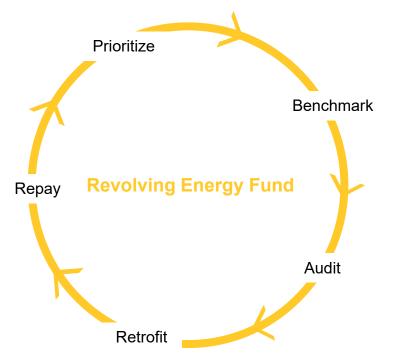
• Good Lab Pressurization



• Variable Kitchen Hood

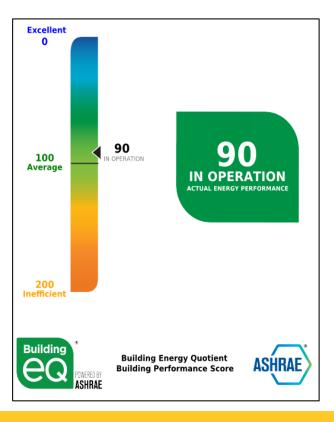
Duct Pressure Testing

• Controls Integration Matrix


Project Name: Project No.: Client: Client Proj No.: Issue Date:	UCF 92010031	OL Addition											Hanson Con	Profe trols I
System	Spec Section / Submittal Number	Submittal Status	Active Control or Monitor Only?	If Active Control - Ability to Write?	Comm Protocol (BACNet, LON, ?)	Gateway Required? (List who Furnishes / Installs if Yes)	Comm Medium Type (Fiber, RS485, Ethernet, ?)	Points List Available	GUI Integration (Custom, Factory, Table, Integrated)	Alarms What to Alarm?	Alarms Levels	Alarms Named	Alarms Communication	Power Ne BAS I
HVAC Controls	230900-01-R1	AAN	Active											
VFDs	262923-01-R1	A												
Building Tertiary Pumps	232123-01-R1	AAN												
Process CHW	226700-01-R0	AAN												
Lab Pressurization														

• Communication via CxAlloy

sign Issues 20 Iolvod 3.0%	Checklists 187 Multiple Statures 97.9%	Tests 55 Passed Partually Passed	ed Cx Submittal Reviewe	d With Comm
		30.9% 43.6%	88,1%	
struction Issues 99	Checklist Lines 12433	Test Lines 3027	Tasks 0	
Pending Resolved 22.2% 60.6%	Yes 85.2%	Yes 85,1%		
sign Issues Construction Iss	ues			
\sim	~ ~	TIME TO CLOSE →	DISCIPLINES WITH THE MOST ACT	IVE ISSUES
17 0	22 60	7 00 1	1 Controls	TVE ISSUES
17 0	22 60	7.00 days	1 Controls	
		7 00 1	1 Controls	-
17 O UNRESOLVE		7.00 days	1 Controls 2 Mechanical	
		7.00 days	1 Controls 2 Mechanical 3 HVAC - Ventilation	
OPEN UNRESOLVE		7.00 days	Controls Mechanical Mechanical HVAC - Ventilation Electrical	
OPEN UNRESOLVE		7.00 days	Controls Mechanical HVAC - Ventilation Electrical	
0PEN UNRESOLVE 100 00		7.00 days	Controls Mechanical Mechanical HVAC - Ventilation Electrical	
OPEN UNRESOLVE 100 00 80 70		7.00 days	Controls Mechanical Mechanical HVAC - Ventilation Electrical S ASSETS WITH THE MOST ISSUES	•
OPEN UNRESOLVE 100 00 80 70		7.00 days	Controls Mechanical Mechanical HVAC - Ventilation Electrical S ASSETS WITH THE MOST ISSUES Fan	-
OPEN UNRESOLVE 500 80 80 70		7.00 days	Controls Mechanical Mechanical HVAC - Ventilation Electrical S ASSETS WITH THE MOST ISSUES Fan Chiller	- - - - - - - - - - - - - - - - - - -


- Reduce campus utility consumption
- Manage Continuing Service Contracts for BAS, TAB and Cx

Benchmarking Buildings

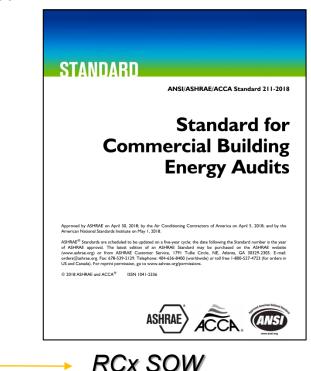
• Which platform?

Benchmarking Buildings

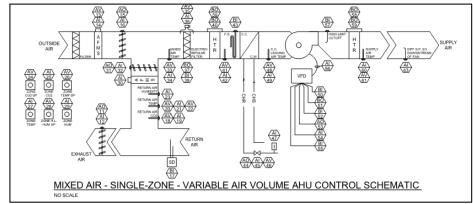
• Pilot Study using bEQ

Standard Operating Procedure:

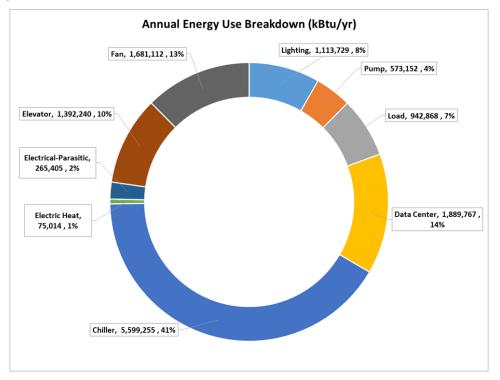
UCF Building Energy Audit and Performance Rating Procedures using the ASHRAE Building Energy Quotient (bEQ) Program


Purpose:

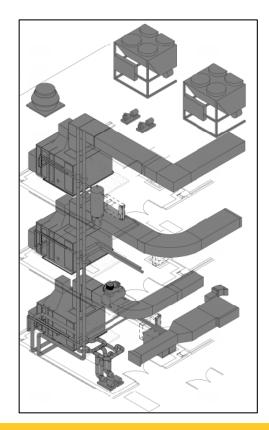
To provide UCF students and staff established guidelines for using the ASHRAE Building Energy Quotient (bEQ) tool effectively to conduct ASHRAE Level 1 energy audits and building benchmarking.


- Plan Forward
 - 20+ buildings per year get bEQ rankings
 - Results determine next step
 - Modernization project (includes Level 2 Audit) or
 - Retro-Cx

- Perform ASHRAE Level II Energy Audits
 - BAS & CxA involvement
 - Auditor does design docs
 - Goal is 3 to 6 per year

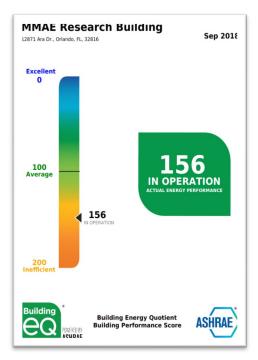

BAS-centric audits

- Design documents result in:
 - BAS, Cx & TAB proposals direct to owner
 - HVAC major equipment Owner Direct Purchase
 - Continuing services mechanical, electrical, etc. bids.
- Project focus:
 - Control diagrams
 - Sequences
 - BAS GUI
 - Trends
 - Alarms
 - Data for FDD


• Energy Scores and Consumption

Facility Improvement Measures

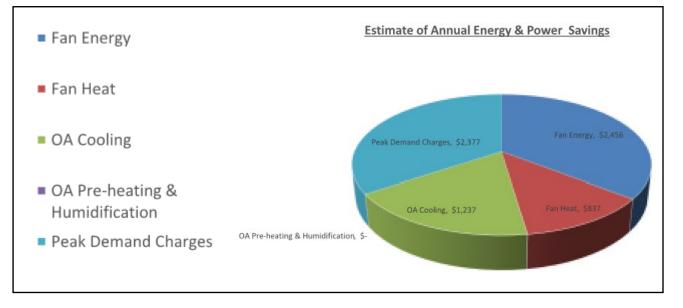
		Rec	om	mended	BAS Upgrades		
Tag	Measure Description	Implementation Costs		Annual avings	Simple Payback (years)	Comments and Recommendations	
1.1	Replace antiquated LonTalk BAS with native BACnet BAS	\$ 209,000.0	\$	53,000	5.2		
1.2	Implement optimal start routine	Included in FIM 1.1	\$	12,800	Included in FIM 1.1	Requires FIM 1.1	
1.3	Reduce minimum flow settings in VAV terminals	Included in FIM 1.1	\$	5,300	Included in FIM 1.1	Requires FIM 1.1	
1.4	Eliminate OA ventilation during morning warm-up/ cool-down modes	Included in FIM 1.1	\$	3,500	Included in FIM 1.1	Requires FIM 1.1	
1.5	Implement OA economizer mode	Included in FIM 1.1	\$	700	Included in FIM 1.1	Requires FIM 1.1	
1.6	Implement dynamic SA duct static pressure setpoint reset	Included in FIM 1.1	\$	7,200	Included in FIM 1.1	Requires FIM 1.1	
1.7	Tune VFD and actuator PID loops to match span range	Included in FIM 1.1	\$	700	Included in FIM 1.1	Requires FIM 1.1	
1.8	Implement demand-control ventilation	Included in FIM 1.1	\$	8,400	Included in FIM 1.1	Requires FIM 1.1	
1.9	Implement supply air temperature setpoint reset	Included in FIM 1.1	\$	4,000	Included in FIM 1.1	Requires FIM 1.1. Implementation cost assumes two zone relative humidity sensors per AHU	
1.10	Install occupancy sensors and integrate with the BAS to relax zone temperature setpoints	Included in FIM 1.1	\$	8,900	Included in FIM 1.1	This FIM overlaps with Lighting FIM 2.3. Requires installation of dual-mode PIR and ultrasonic occupancy sensors.	
1.12	Check hydronic valves and airside damper actuators are operating properly	Included in FIM 1.1	\$	1,800	Included in FIM 1.1	If the OAD damper is commanded to anything less than 100%. VFD speed can be reduced by reducing the total static pressure across the unit.	


- Sample Project
 - Replacing control system
 - Replacing PIU w/ separate heat
 - Replacing three AHUs
 - Replacing OA Dampers
 - Replacing RA Dampers
 - Updating tie to campus CHW
 - Fixing back-up chillers SOO
 - Implement dynamic reset SOO
 - Implement DCV

Retro-Commissioning

• 5 to 10 RCx efforts per year

Retro-commissioning Conditions							
Energy Performance	Less than AVERAGE						
BAS	Native BACnet						
HVAC	FAIR						
Work order history	Neglected						
Alarms	Numerous						


Retro-Cx Projects

- Existing Chiller Plants Retro-Commissioning
 - Satellite Plants has four 2,000 ton chillers
 - Main Plant has four 2,000 ton chillers (plus an absorption)
 - 3 million gallon thermal storage tank

Retro-Cx Projects

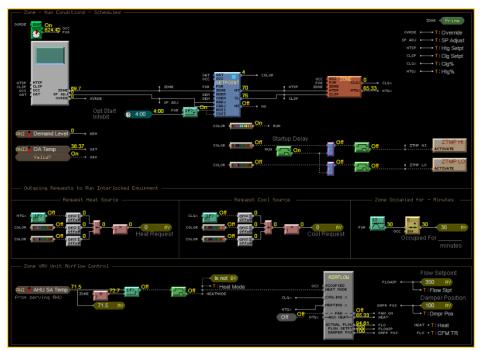
- Duct Sealing
 - 4 AHUs leaking 19,475 CFM out of 126,250 CFM Supply Air

Re-Commissioning

- Key to lowering OPEX
 - BAS response team hours in FY 17-18 was 66% due to hot / cold calls
- RCx can get in front of:
 - Maintenance burdens
 - Reducing deferred maintenance backlog
 - Information transfer to Operations

BAS Point to Point

UCF	Energ	es and y Servi				Bidg. 0003	Re-CX Iss Main Chi	-
			-	Issue		Resolution	-	
lssue Referenc	Jate J	Discipline 🚽	Assoc. Equipment	Comments / Observation	Action By 🚽	Corrective Action	Date Resolved V	Status 🚽
1	1/29/19	CHWP - 2	CH-2	Suction PT line clogged. Unable to verify Ft Head across pump. Test ports are installed I correctly. Factory supplied ports should be used. Evap GPM total verified by barrel pd.	CHW Dept.	Review with Saul		Open
2	1/29/19	CHWP - 3	CH-3	Test ports are installed I correctly. Factory supplied ports should be used. Evap GPM total verified by barrel pd.	CHW Dept.	Review with Saul		Open
3	1/29/19	CH-3	СН-3	Condenser return has Onicon flow Meter installed. No Al shown on BAS. Further investigation required.	Controls	Need to review with Nicole.		Open
4	1/29/19	CH-3	Evap.	Evap wet DP out of Cal. W.O # 10614384	CHW Dept.	Jose to replace Wednesday morning. Will retest to Verify. Wet dp has been replaced.BAS 2.77 PSID meter reading 2.71 PSID. Calibrated.	1/30/19	Closed
5	1/30/19	BTU meter EVAP	CH-4	BTU meter appears to be out of calibration. Measured GPM 3816, BTU meter 3564 GPM.	Keith	Spoke with Keith about verifying finding. Wednesday feb.6. Last calibration Date 6/30/2014		open
6	1/30/19	BTU meter EVAP	сн-5	BTU meter appears to be out of calibration. Measured GPM 3775, BTU meter 3360 GPM. 2.4 degree difference between measured and BTU temp Lev water temp. Measured 44.3, BAS 43.3 and BTU Meter 41.9.	Keith	Spoke with Keith about verifying finding, Wednesday feb.6. Last calibration Date 4/28/2015		open
7	1/30/19	Condenser Water GPM.	CH-4	Measured condenser water GPM 6173 @ 6.67 FT.BAS reading 5.73 Ft @ 5757 GPM.		Need to replace Dp sensor. 116% (16%) difference between measured and BAS.		open
8	1/30/19	Condenser Water GPM.	CH-5	No proper test port for testing dp across chiller Cond barrel.	CHW Dept.	Spoke with Saul and Eddy. They will have a test port installed on Thursday 1/31/2019.		open
		1	1		T			1


TAB

- Re-TAB
 - Calibrates the BAS
 - Returns HVAC to design parameters & records performance degradation
 - Restores BTUs, CFMs and GPMs
- BAS now provides trustworthy telemetry

	PUMP 1	TEST REPORT		
Job Name: Retro Cx- UES 0003 Main Chiller Plant			DATE:	
PUMP DATA				
Pump Designation	SCHWMTR-1	SCHWMTR-2	SCHWMTR-3	SCHWMTR-4
Pump Manufacturer	ARMSTRONG	ARMSTRONG	ARMSTRONG	ARMSTRONO
	12X12X17 /	12X12X17 /	12X12X17 /	12X12X17 /
Model Number	43TCZ	43TCZ	43TCZ	43TCZ
Impeller Size				
				1800 / 1762
RPM	1800	1800	1800	Tested
Design GPM	5300	5300	5300	5300
Design Head	180	180	180	180
System Fill Pressure				
MOTOR DATA				
		BALDOR /	BALDOR /	BALDOR /
Motor Manufacturer	TECO / 449TCZ	445TCZ	445TCZ	445TCZ
Horsepower	300	300	300	300
RPM	1788	1780	1780	1780
Voltage	460	460	460	460
Phase	3	3	3	3
Amperage				
Rated	332.0	335.0	346.0	346.0
Corrected for Voltage				
TEST RESULTS - FINAL				
Suction	42.1	Punch	43.7	41.0
Discharge	79.2		81.2	80.4
Pressure Differential	37.1	#VALUE!	37.5	39.4
Head in Feet	85.7		86.6	91.0
Final GPM	7681		7641	7454
Test Voltage	NA	NA	NA	NA
-	NA	NA	NA	NA
	NA	NA	NA	NA
Running Amperage	332.1		282.2	332.5
	VFD		VFD	VFD

Functional Testing

- Sequences of Operations tested
- Sequence enhancements programmed and tested
- Systems Manual updated (and into CMMS and GUI)

Monitoring-Based Cx

- Map ReCx project BAS points into Monitoring-Based Cx FDD
- "Human" intervention of FDD faults initially
- If Confidence is > 95%, then FDD faults result in actual work orders.

Carbon Neutrality

- UCF's goal is carbon neutrality by 2050.
- What will our carbon impact look like by then?
- What does it look like now?

Office: 3546 South Perseus Loop Orlando, FL 32816-3644 Mail: P.O. Box 163644 Orlando, FL 32816-3644 407-823-6789 | energy@ucf.edu

Carbon Neutrality

- Demand Response = approximately 30% average energy savings
- For 2018, campus reduced from 793 million kBTU to 555 million kBTU
- How much PV is needed to generate 555 million kBTU?
 - 136 MW = 25% coverage (362 of 1,440 acres)
 - Not realistic, and doesn't account for growth
- Peak electrical demand = approximately 30 MW
- Is it legal/safe to export 100+ MW on peak?
- Is it cost effective to store it?

Smart Grid Plans

- DG via PV, hydrokinetic, waste-to-energy, co-gen, tri-gen.
- 140 kW grid-connected PV currently
- Energy Storage
- BAS infrastructure for dynamic demand response
- Advanced AMI utility metering and BAS utility sub metering
- Power Systems degrees collaborating with UES and Siemens
 - Digital grid lab
 - Smart buildings lab

Renewable Energy

- Only 140kW installed currently
- Ground mount lowest \$/W, needed for 2020 goal
- Rooftop prioritize by size, verify structural, simulate grid, deploy
- Parking Garage
- Surface Parking
- Floating Arrays
- Other sources
 - Hydrokinetic turbines (reclaim pressure reduction) = ~12 kW
 - Waste-to-Energy bio-digester = waste audit needed

By The Numbers.

Avoided **\$30.5 million** in utility expenditures. **23 buildings** are certified under LEED. **\$25.4 million** in infrastructure improvements since 2014. Reduced campus Energy Use Intensity by **42.4%** since 2007.

Conclusions

- Dedicated, yet diverse, team with aligned purpose
- Strong, transparent working relationships
- Living documents and easily accessible records
- Academia eager for collaboration with operations
- Have a plan

