

Using Data Analytics to Automate and Enhance the Commissioning Process

Course Number: CXENERGY1917

John Petze SkyFoundry

April 17, 2019

Credit(s) earned on completion of this course will be reported to AIA CES for AIA members. Certificates of Completion for both AIA members and non-AIA members are available upon request. CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product.

Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

This course is registered with AIA

Copyright Materials

This presentation is protected by US and International Copyright laws. Reproduction, distribution, display and use of the presentation without written permission of the speaker is prohibited.

https://skyfoundry.com/

© SkyFoundry 2019

Course Description

Consultants involved in commissioning, energy analysis, energy management and Monitoring and Verification have found data analytics software to be a powerful tool that enables them to transform the services to their clients.

Today's Data Analytics software allows them to automate the analysis that has traditionally required continuous manual effort, and provide clients with new, ongoing consultation-based service offerings to help continuously improve facility performance and eliminate the backwards-drift seen in many energy conservation projects.

This presentation will provide case study examples demonstrating how analytics software was applied to the commissioning process and its role in delivering significant financial results and help owners and operators make energy and operational efficiency improvements permanent.

Learning Objectives

At the end of the this course, participants will be able to:

1. Examples of common and useful analytic rules that can be applied to HVAC systems and KPI's to track building energy performance.

2. The difference between alarms, analytics and analysis tools.

3. The role of data tagging to prepare equipment data for analytics.

4. How including utility tariff rates brings deeper understanding of performance, and equipment operating patterns.

The Role of Data in Commissioning, M&V, Energy Analysis and Reporting

Data is the fundamental element for commissioning, energy analysis, energy management and Monitoring & Verification

More and more data sources are available today: BAS, Metering, Utility APIs for consumption and rate data, weather

There is more data available than humans can deal with manually

We need tools

Analytics software is that tool

The Role of Analytics

Analytics software tools enable us to automate and streamline the tasks involved in acquiring, processing, analyzing, and reporting data for commissioning, energy analysis and M&V

Traditional Approaches

- Manually interpret and process csv files
- View graphics of equipment systems
- Review reports or history logs
- Import data into Excel for manual analysis
- Manually assemble reports
- No single tool that works across all kinds of data
- How do you do this today?

Applying analytics to our data

Step 1: Acquiring Data

Communication connectors enable direct access to data...

- Streaming data from control/BAS systems via Protocols such as: BACnet, Modbus, Haystack, OPC UA, Obix (supports polling, watches, trend log synchs)
- Batch import of data (CVS, XML, JSON, formats)
- Existing Data from databases: SQL and similar
- Software automates data acquisition and storage in a normalized format

<i>™</i> ₽₽₽	et 🛾 Project 🎙	Haystack	SQL Server	SNMP	SPC UA
Modbus	$\{ \text{ REST} \}$		PortfolioManag	er° ⊵B	IX sedona

Step 1: Normalizing Diverse Data

Data from different sources comes in different formats with different time stamps and different semantic information (descriptive information)

In order to do analysis across diverse data that data needs to be normalized

Data normalization is a key part of the process with analytics software is the

Normalizing Diverse Data – Semantic Tagging

- Give the data meaning via "tags"
- No need to maintain rigid schemas add tags whenever you want to capture information

Tags represent

- Dimensions, units
- Relationships, associations
- Location
- Other meaning and descriptors

dis	elecMeter	equip	hvac	lighting	plug	siteMeter
Headquarters ElecMeter-Main	Y	1				1
Bon Air ElecMeter-Main	∢	∢				∢
Va Beach ElecMeter-Lighting	1	∢		1		
Woodley Park ElecMeter-Main	1	∢				1
Inner Harbor ElecMeter-Main	1	∢				1
Bon Air ElecMeter-Hvac	1	∢	∢			
Inner Harbor ElecMeter-Lighting	4	∢				

Project 🏷 Haystack

Project Haystack Is...

- A community of people working to address one of the key challenges in using smart device data...
- **THE CHALLENGE**: Device data has poor "semantic modeling" (information describing the meaning of the data)
- A manual, labor intensive process is required to "map" the data before it can be used in different applications
- This adds cost and slows the use of this valuable data

- Project Haystack Solution: A standardized methodology for describing data that makes it easier and more cost effective to analyze, visualize, and derive value from our operational data. *Open-source, no cost.*
- Think of it as a "MARKUP LANGUAGE" for data
 - Why can I point my browser at your website and read what you have published?
 - We didn't pre-arrange for me to be able to interpret your website code
 - It works because industry agreed on a mark up language (HTML)
 - If you use HTML I can read the "data" (text) on your website
 - Haystack does the same thing for device data

Project Haystack

- Analyze this: **zn3-wwfl4 = 76.2**
- Hmmmm... What does the number represent? Deg C, F, KW, kPa???
- Need to know units. Lets say it is Deg C
- Hmmmm... Is 76.2 Deg F OK?
- What is it? Zone temp, Return air temp, chilled water temp? Lets say it's a Zone
- What is the schedule for the space? Schedule #1 = 7:30 AM -6:30 PM
- What AHU is it served by? AHU-1
- What VAV box serves it? VAV-27
- How can I convey these answers in a standard way that other software can interpret?

Example of Haystack tags to describe a point in a system:

AHU1-SAT = sensor, discharge, air, temp, deg F, ahuRef -> AHU-1 Point Name descriptive tags association tag

Learn more about Project-Haystack.org here: <u>https://project-haystack.org/</u>

Project Proyect

BACNET COLLABORATION WITH HAYSTACK

RICHMOND, VA. (PRWEB) MARCH 02, 2018

ASHRAE's BACnet Committee, Project Haystack and Brick Schema Collaborating to Provide Unified Data Semantic Modeling Solution

 Formal collaboration to integrate Haystack tagging and Brick data modeling concepts into the proposed ASHRAE Standard 223P for semantic tagging of building data.

ASHRAE Standard 223P: "Designation and Classification of Semantic Tags for Building Data" provides a dictionary of semantic tags for descriptive tagging of building data including building automation and control data along with associated systems.

By integrating Haystack tagging and Brick data modeling concepts with the upcoming ASHRAE Standard 223P, the result is intended to enable interoperability on semantic information across the building industry, particularly in building automation.

http://www.prweb.com/releases/2018/03/prweb15264563.htm

Project 🏷 Haystack

RSS

Step 1: Normalizing Data – the Time factor

Different time stamps and different semantic information (descriptive information)

Historian functions address differing timestamps to enable users to see meaningful trends

Sample csv file showing different time stamps for differing data <

	A	В	С	D	E	F	G	Н	I	J	К	L	Μ	Ν	0	Р	Q
1	Timestamp	Gaithersbur	g Gaithersburg	Gaithersbur	g Gaithersburg	Washington	, Gaithersbu	rg Gaithersburg	Gaithersbu	rg Gaithersburg	Gaithersburg	Gaithersbur	g Gaithersburg	Gaithersbur	Gaithersburg	g RTU-1 Zonel	ſempSp
2	2019-01-22T00:00:00-05:00 New_York	FALSE															
3	2019-01-22T11:15:00-05:00 New_York						FALSE										
4	2019-01-22T12:00:00-05:00 New_York			FALSE													
5	2019-01-22T13:00:00-05:00 New_York											FALSE					
6	2019-01-22T21:15:00-05:00 New_York													FALSE			
7	2019-01-22T23:00:00-05:00 New_York					49 ° F											
8	2019-01-22T23:45:00-05:00 New_York		67.06527709	960938°F	0.05000000	74505806inH	I,ÇÇO	67.06527709	10kW	69.10281372	0%				60°F		
9	2019-01-23T00:00:00-05:00 New_York	FALSE	66.99794769	FALSE	0.079999998	21186066inH	FALSE	58.08896255	6kW	69.01850891	0%	FALSE		FALSE	60°F		
10	2019-01-23T00:15:00-05:00 New_York		66.78258514	404297 ° F	0.05000000	74505806inH	I,ÇÇO	57.98020553	10kW	68.78629302	0%				60°F		
11	2019-01-23T00:30:00-05:00 New_York		66.59963989	257812°F	0.079999998	21186066inH	I,ÇÇO	57.88782119	15kW	68.55690002	0%				60°F		
12	2019-01-23T00:45:00-05:00 New_York		66.41918182	373047°F	0.07000000	29802322inH	I,ÇÇO	57.79668426	15kW	68.33055877	0%				60°F		
13	2019-01-23T01:00:00-05:00 New_York		66.24111175	53711°F	0.059999998	65889549inH	I,ÇÇO	57.70676422	11kW	68.10723114	0%		11.5kWh		60°F		
14	2019-01-23T01:15:00-05:00 New_York		66.06541442	871094°F	0.07000000	29802322inH	I,ÇÇO	57.61803436	13kW	67.88686370	0%				60°F		
15	2019-01-23T01:30:00-05:00 New_York		65.89205169	677734°F	0.059999998	65889549inH	I,ÇÇO	57.53048706	17kW	67.66942596	0%				60°F		
16	2019-01-23T01:45:00-05:00 New_York		65.72099304	199219°F	0.059999998	65889549inH	I,ÇÇO	57.44410324	10kW	67.45487976	0%				60°F		
17	2019-01-23T02:00:00-05:00 New_York		65.55220794	677734°F	0.05000000	49°F		57.35886383	9kW	67.24317932	0%		12.75kWh		60°F		
18	2019-01-23T02:15:00-05:00 New_York		65.43650054	93164°F	0.05000000	74505806inH	I,ÇÇO	57.42417907	89kW	67.03513336	0%				60°F		
19	2019-01-23T02:30:00-05:00 New_York		65.32614135	742188°F	0.05000000	74505806inH	I,ÇÇO	57.49220275	13kW	66.83316802	0%				60°F		
20	2019-01-23T02:45:00-05:00 New_York		65.22057342	529297°F	0.059999998	65889549inH	I,ÇÇO	57.56264114	9kW	66.63720703	0%				60°F		
21	2019-01-23T03:00:00-05:00 New_York		65.11973571	777344°F	0.079999998	21186066inH	I,ÇÇO	57.63546371	16kW	66.44717407	0%		30kWh		60°F		
22	2019-01-23T03:15:00-05:00 New_York		65.02355194	091797°F	0.079999998	21186066inH	I,ÇÇO	57.71064376	11kW	66.26298522	0%				60 -∞ F		
23	2019-01-23T03:30:00-05:00 New_York		64.93197631	835938°F	0.05000000	74505806inH	I,ÇÇO	57.78814697	7kW	66.08457183	0%				60°F		
24	2019-01-23T03:45:00-05:00 New_York		64.84493255	615234°F	0.059999998	65889549inH	I,ÇÇO	57.86794281	82kW	65.91184997	0%				60 ¬ ∞F		

Step 1: Normalizing Data – the Time factor

Historian functions correlate the data and show operators seamless trends across data with varying sampling frequency

Use Case: Analyzing and Visualizing Energy Data **Baselines**

Use Case: Analyzing and Visualizing Energy Data **Baselines**

View and analyze energy against baseline using past data, calculated baselines, model based baseline data

■ Demo ∨ Y ▼ Usage Operation Profile Swivel Tariff All Sites Select ▼ < Week of 16-Dec-2018 > Options	su 🔪	Baseline comparison as a Delta
Elec Consumption • Δ Sum over 24hr • Normalize by Area, Degree-Day • Baseline Prev Month		
0.05 kWh/ft²/*daysF		Baseline view
0.03 kWh/ft³/*daysF		
-0.01 kWh/ft?/*daysF		
-0.03 kWh/ft²/*daysF		S S S S S S S S S S S S S S S S S S S
Sun 16th Mon 17th Tue 18th Wed 19th Thu 20th Fri 21st Sat 22n	Jd	Sun 23rd

Use Case: Analyzing and Visualizing Energy Data Normalization

Normalize energy data based on:

Normalize by
By revenue per site
Normalize by Area
Normalize by Degree-Day
Clear Ok Cancel

- Weather (degree days, temps, other)
- Building size
- Production factors:
- Occupancy actual or scheduled
- Revenue (restaurants)
- Unit production factories
- Site specific
- Normalization of model-generated energy data

Use Case: Analyzing and Visualizing Energy Data **Normalization**

📕 Demo 🗸							🗖 su 🗸 🖞	SkySpark
4 - Usage	Operation Profile S	wivel Tariff					∷ ,	★ ⊥ 🖿
All Sites Select	▼ < Week of 1	3-Jan-2019 > 0	ptions					
		Elec Consumption •	Sum over 10min •	Normalize by Area, De	egree-Day • Baseline Pr	ev Month		
0.007 kWh/ft²/°daysF	Carytown O Carytown	n Baseline 🛛 🛑 Gaithersburg	O Gaithersburg Baseline	Headquarters O Head	dquarters Brueline			_
0.006 kWh/ft²/*daysF								
0.005 kWh/ft²/°daysF			///	15-Jan-2019 Tue 5:32:04PM EST	• 0.005 kWh/ft²/*daysF	/ 		
0.004 kWh/ft²/°daysF				Copy data as 🔻 Dow	vnload 🔻			4
0.003 kWh/ft²/°daysF	ŕ			Timestamp Carytown Baseline Carytown Gaithersburg Baseline Gaithersburg	15-Jan-2019 Tue 5:32:04PM 0.005 kWh/ft²/*daysF 0.002 kWh/ft²/*daysF 0.002 kWh/ft²/*daysF 0.001 kWh/ft²/*daysF	EST		
0.002 kWh/ft²/°daysF	~~~~	12mg	- Mo	 Headquarters Baseline Headquarters 	0.00016 kWh/ft²/°daysF 0.000087 kWh/ft²/°daysF		my ····	110
0.001 kWh/ft²/*daysF	MAN .		Kan ha	this		Vision	Marin	A
0 kWh/ft²/°daysF Sun	13th M	on 14th Tu	e 15th	Wed 16th	Thu 17th	Fri 18th	Sat 19th	Sun 20th

Use Case: Combining Energy and Operational Data

Provides visibility to understand the impact of equipment operation on energy use and energy cost based on tariff calculations

Enables operators to more effectively identify and justify maintenance priorities, capital expenditures and ECMs to improve facility performance and reduce operational costs.

Use Case: Impact of Tariff Rates on Energy Data

Complex tariff rates add additional complexity and need for analytic tools

Can have substantial impact on energy costs – *example:* you can use more energy for less money if you use it at the right time

"Tariff engine" capability can turn consumption and demand data into actual costs for evaluation of investments, control strategies and reporting

Timestamp	12-Nov-2018 Mon 4:57:48AM ES
Winter On-Peak Demand	\$1,527
Woodly Park ElecMeter-Main kWh	204 kWh
Woodly Park ElecMeter-Main kW	244 kW
Winter On-Peak Consumption	\$91.99
Winter Off-Peak Consumption	\$69.63 Sector Main KW
Winter Off-Peak Demand	\$0
Rittenhouse ElecMeter-Main kW	103 kW
Rittenhouse ElecMeter-Main kWh	102 kWh
Generation kWh	\$213.33
Distribution kWh	\$106.66
Demand	\$0
Short Pump ElecMeter-Main kWh	86.25 kWh
Short Pump ElecMeter-Main kW	79 kW
Generation kWh	\$260.93
Distribution kWh	\$130.46
Demand	\$0

Impact of Tariff Rates

Rate Modeling. The ability to capture the various charges that make up an electric rate. Costs for energy go beyond simple consumption (kWh) and demand (kW). Typical charges can include:

- Consumption
- Demand
- Time of Use including both time of day and monthly use factors
- Service and equipment charges (fixed rate and % based)
- Distribution and Generation charges
- Minimum contract charges
- Ratchets
- Ranges (or blocks)
- Custom charges which can be expressed as math functions
- Definition of billing periods (including variable billing periods)

Once the charges are defined a Tariff Engine calculates energy costs based on the charges and actual energy consumption data. Analytic rules and energy analysis algorithms can use those to calculate costs associated with issues detected in the operation of equipment systems providing precise calculation of costs associated with the use, and misuse, of energy resources.

Impact of Tariff Rates on Energy Data

Automated Analytics: Beyond Manual Analysis The Role of Analytics in Detection of Faults, Deviations, Anomalies, Performance Drift, Loss of Efficiency

Do we know how our building systems really operate?

Detecting Faults, Deviations, Anomalies, Loss of Efficiency

"If I have a computer-based building automation system things must be running properly..."

Right ????

Lots of Technology... But Still a Big Challenge...

Who's watching to make sure?

- Who verifies that what they are doing is right?
- That control strategies were well designed?
- That assumptions were (are) correct?
- That they are still running as expected... haven't been interfered with or overridden a common problem
- That sensors and other devices have not degraded, performance hasn't drifted...
- Buildings are too complex for this to be done solely by humans
- Too much data... systems too complex...

Analytics Provides the Solution

- Automatically scans your data to detect patterns
- Automatically generates views on issues detected
- From portfolio summaries to equipment detail views
- Continuous, ongoing analysis based on your domain knowledge – an ever-present expert

Use Case: Detecting Faults, Deviations, Anomalies, Loss of Efficiency

Available Data Influences Effective Analytic Rules

- The analytic rules you can deploy are always related to the available data available so that's the first question to answer what data is available?
- For example, if we have only energy consumption data available (KW and KWh), rules can be used to identify patterns representing issues like buildings running 24 hours a day, starting early or running too late, load profiles, and demand peak patterns

Examples of Common Analytic Rules

- Detect improper operation of economizers
- Identifying simultaneous Heating and Cooling
- Short Cycling, Long Cycling, Excessive Mode Transitions
- Issues with Zone or Room Thermostat Dead-bands
- Non-functioning sensors
- Comfort Conditioning Performance
- Schedules not being followed (identify via metered energy use, air flow, equipment status and other means)
- Loss of heat transfer efficiency delta between return and supply is less than threshold or design

Example: Detail on Economizer Operation Rule

Issues:

1. Non-modulating damper

- 2. Temperature sensor problems (including missing/out of range sensor values)
- 3. Economizer operating when it should not
- 4. Economizer not operating when it should
- 5. Ventilation greater than needed
- 6. Inadequate ventilation

Required data:

- Mixed air, return air, and outdoor-air temperatures (enthalpies for enthalpy-controlled economizers)
- Damper signal,
- Supply fan on/off status, and
- Heating and cooling on/off status or heating and cooling valve signal
- The measured data can be at any interval but preferably 1-minute (1-minute, 5-minute, half-hourly, or hourly, etc.)

Presenting Results Detected by Analytics: **Timelines** – Show Operating Patterns of Faults/Issues

📑 Demo 🗸																			ſ	su	\sim	SkyS	park
🚍 🚽 🛛 Swiv	el	Table Equip																				★ ⊥	L 🖪
All Sites S	elect	▼	>	Rules	Option	s																	
Site	F	Rule	Duration		Cost	1a 2a	3a 4a	5a 6a	7a 8a	9a 10a 1	1a 12p	1p 2p	3р 4р	5p 6	5p 7p	8p 9p	10p 11p	p Eq	uips				
Carytown	> (i) Temp Sensor Failure		24hr										·				(j	Carytown	RTU-1			>
Chevy Chase	> (i) KW Exceeds Target		10.75hr	\$483.75													(j	Chevy Ch	ase Elec	Meter-N	lain	>
Fairhill	> (i) KW Exceeds Target		1hr	\$45													()	Fairhill Ele	ecMeter-	Main		>
	(i) Lights On and Unoccupied		10hr	\$24													(j	Fairhill Ma	ain Light	s		>
Gaithersburg	> (i) AHU Cool-Heat Mode Cycling		2hr														()	Gaithersb	urg RTU	1		>
	(i) AHU Fan Short Cycling		3hr														(j	x 2				
	(i) AHU On and Fan Off		30min								1						(i	Gaithersb	urg RTU	2		>
	(AULI Autoida Dampar Stuck Apan		1 25hr		_						()			()	Gaithersb	urg RTU	1		>
	(Damper should be closed, but ter	np differentia	l between	mixed air s	sensor							\sim					(j	Gaithersb	urg Elec	Meter-N	lain	>
Headquarters	> (and return air sensor indicates th	at significant	outside a	ir is being r	nixed.												()	Headquar	ters Elec	Meter-M	Main	>
Rittenhouse	> (unit is not cooling nor heating.	e use dischar	rge senso	r but only w	nen												(j	Rittenhou	se RTU-1			>
	(Decommended Actions																(ì	Rittenhou	se Main	Lights		>
Short Pump	> (Recommended Actions																()	Short Pun	np ElecN	leter-Ma	ain	>
	(Look to see if damper con Look to see if damper is h 	trol signal is o eing comman	oscillating	during tim	20												(j	Short Pun	np Main	Lights		>
Woodly Park	> (sparks are found																(j	Woodly P	ark RTU-	1		>
	(Manually check damper to 	see if linkag	e is broke	n or stuck													(j	Woodly P	ark RTU-	1		>
	(Priority: Medium																(j	x 2				
	(1	-		+													()	Woodly P	ark Elect	Neter-M	ain	>

Presenting Results of Issues Detected by Analytics: **Bubble Charts** – Show the magnitude of various factors (duration, cost, frequency)

📑 Demo 🗸							F	su 🗸 🛛 Sky	Spark
📰 – Swivel Table I	Equip							≡ ★	⊥ 🖿
All Sites Select 🔻 <	Dec-2018	B > Rule	Options						
All Sites									
AHU Cool-Heat Mode Cycling	AHU Fan Failure	AHU Fan Short Cycling	AHU Group Cool and Heat	AHU On and Fan Off	AHU Outside Damper Stuck Open	KW Exceeds Target	Lights On and Unoccupied	Temp Sensor F	ailure
41.75hr		76hr	2.25hr	20.25hr		170.5hr			
						223.75hr		•	24hr
48.25hr		88.5hr	1hr	19.5hr	3.75hr	174.75hr			
				9.75hr	3hr	150.75hr	76.5hr		
	133hr						127.5hr		528hr
	145.25hr						13.75hr		1008ŀ
						225.5hr		•	24hr
		• 30min		7.25hr	5hr	137.25hr	114.75hr		

More Tools of the Trade: Key Performance Indicators – **KPI's**

Demo 🗸						Г	su∨ SkySpark
Swivel Table		-					÷ ★ ±
All Sites Select ▼ <	Today > Rules Op	tions					
All Sites				Last at a construction of a second	111-11-11/12	7	7
Carytown > 12.42hr	58 kW 323 kW 3,502 kWr	0.046	-59.2	0.00076 0.004	18.42 W/ft ² 103 W/ft ²	58.63 °F	-5.425 Δ°F
Chevy Chase > 9.92hr	78 kW 605 kW 6,198 kW	• 0.002	-24.73	0.000023 0.00018	0.554 W/ft ² 4.297 W/ft ²	68.82 °F	2.817 Δ*F
Fairhill > 16.09hr	85 kW 456 kW 4,363 kWf	0.011	-42.7	0.00021 0.001	4.964 W/ft ² 26.63 W/ft ²	66.46 °F	2.046 Δ°F
Gaithersburg > 17.59hr	84 kW 447 kW 4,651 kWh	0.022	-29.97	0.00040.002	0 10.48 W/ft² 55.78 W/ft²	67.37 °F	0.858 Δ*F
Headquarters > 9.92hr	91 kW 639 kW 6,665 kWh	• 0.002	9.453	0.000027 0.00019	◎ 0.646 W/ft ² 4.538 W/ft ²	68.82 °F	2.818 Δ*F
Rittenhouse > 7.92hr	dis		-42.73	0.000760.004	18.42 W/ft ² 86.69 W/ft ²	68.62 °F	3.885 Δ°F
Short Pump > 15.83hr	🗹 😑 AHU Fan Ru	ntime	4.479	0.00036 0.001	0 7.301 W/ft ² 26.22 W/ft ²	68.83 °F	4.05 Δ°F
Woodly Park > 17.59hr	🕑 🔴 Watts/ft²		-60.75	0.000470.002	12.35 W/ft² 65.02 W/ft²	67.93 °F	1.689 Δ°F
	🕑 🔴 ZoneTemp C)cc Avg					
	🗷 🛑 ZoneTemp 🛽	Sp					
Examples:	🗹 🔵 kW		(an he v	irtually an	v math	
	🖉 😑 kW Norm (k)	N/ft²/°daysF)				ymath	
	🖉 🥚 kWh		r	elationsh	nip: sum, r	ange	5 H C .
		(Wb/ft2/°dovoE)	C	of sums	average	delta	ENO CAT,
		(wil/it-/ uaysr)			a orago, (
	💌 🔵 kWh 🛆 Prev	Year (kWh/°day:	sF)				F-1103

EDUC EDUC

- An alarm is when you are on the gurney in the ER Analytics are the lab tests you take every year to stay out of the ER
- Alarms require that you fully understand the issue ahead of time so you could set them up – have to be preprogrammed *Analytics find patterns & issues you couldn't have foreseen Can be added at anytime*
- Controller-based alarms deal with control system data
 Analytics combine operational, energy, production, facility
 and corporate data to show patterns and correlations across
 your portfolio of device data
 - Correlation examples equipment type, age, material, vendor, weather effects, production factors, etc

Alarms vs Analytics Understanding the Differences

- An alarm is a value compared to a limit "now" Analytics look at patterns or signatures in the data – and can include multiple data sets from different systems over different time periods
- Alarms require "touching" the end device programming Analytics allows you to add rules as your understanding increases WITHOUT needing to reprogram the end device
- Alarms often "cascade" overwhelming operators Analytics can often replace majority of non-productive alarms – they better explain what is happening and why

Analysis vs Analytics

• An analysis: Generate a graph of energy consumption across a specific time. A user would then look to discern patterns, such as peaks or toughs and their duration

Analytics Ez

consumption across a specific period of time. This enables users to see how equipment operation influences energy consumption patterns

But Analytics Don't Save Money !!!

Getting Value from Data Analytics: The Last Mile

- To get value from data analytics organizations need to be prepared to act on the results
- If I could walk into your building and magically detect 100 problems could you address them?
- How quickly? What if they require capital \$
- What if they would exceed your planned budget?
- Even if they had a 1 month payback?

Analytics Are Not a Thing

Analytics Is a Journey

- Applying analytics to building systems is not like simply buying new equipment with lower energy consumption
- Not possible to calculate the exact savings ahead of time – can you sell that?
- Don't look at it as an "install it and forget it solution"
- Analytics are a tool enables us to see how building systems are really performing
- Identifies faults, deviations from expected performance, anomalies...
- All of which represent opportunities for savings...
- ...But require action to achieve benefit

lts not an LED

lightbulb!

CEU Questions

- 1. Name 3 methods for acquiring data from building systems
- 2. What does a Tariff engine do to energy consumption data
- 3. Choose all correct answers:

Project-Haystack.org provides:

A) a standard naming convention for BAS points

B) a standard metadata approach to represent the meaning of data items gathered from different systems

C) a standard for communication to acquire building data

- 4. Name 2 common energy related KPI's
- 5. Name 2 common rules applied to air handlers
- 6. True or False: Analytic savings can be calculated in the same way as installation of LED lightbulbs
- 7. True or False: It is possible to determine whether a building is operating according to an occupancy schedule by analyzing interval meter data
- 8. True or False: Analytics is simply another name for alarms typically found in a BAS

This concludes The American Institute of Architects Continuing Education Systems Course

Using Data Analytics to Automate and Enhance the Commissioning Process

Contact Information:

John Petze, Principal, Co-Founder

SkyFoundry

www.skyfoundry.com

john@skyfoundry.com

acg

