



## The Whole is Greater than the Sum of its Parts: The Interdependence of MEP and Envelope Commissioning

Course Number: CXENERGY1901

EDUCATION CATION

Mark Gelfo, P.E., CxA, EMP, LEED Fellow TLC Engineering for Architecture Darek Brandt, P.E., Interek/PSI

# The Whole is Greater than the Sum of the Parts: Integrated BECx and MEPCx



**Darek Brandt, PE** Senior Associate Walter P Moore

WALTER P MOORE



Mark Gelfo, PE, CxA, LEED Fellow, EMP Managing Principal TLC Engineering Solutions



### **AIA CES**

Credit(s) earned on completion of this course will be reported to AIA **CES** for AIA members. Certificates of Completion for both AIA members and non-AIA members are available upon request. This course is registered with AIA CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product.



Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

## **AIA CES - LEARNING OBJECTIVES**

Upon completing the course participants will be able to:

- 1. Define the BECx and MEPCx process and standards
- Identify BE/MEP Cx synergy opportunities to save time and money
- 3. Describe how the key **BECx and MEPCx tasks are** interdependent
- 4. Recognize **project types** where integration of MEP and BE systems are especially important





# COMMON MISCONCEPTIONS

Commissioning adversely affects budget.

Commissioning adversely affects schedule.

Only the mechanical systems need to be commissioned.

Commissioning starts in construction phase - it's just another name for testing the installed mechanical systems.

The Architect and General Contractor will handle all the design and construction issues.

Any post construction issues with the MEP or BE systems will be taken care of by GC during warranty stage.

It will cost us less to fix any MEP or BE defects after construction than during construction.

#### **OUR PREMISE:**



# THE BUILDING ENCLOSURE

#### **Today's Building Enclosure**

- Complex building materials
- Multi-layer construction / multiple trades
- Thinner construction
- Higher performance requirements
- Less skilled craftsman
- Limited training
- Higher expectations
- Compressed Schedules
- Reduced Budgets



# MECHANICAL ELECTRICAL PLUMBING

#### Today's MEP

- Technically complex
- Multiple Systems Working Together (or not)
- High Performance
- Integrated Controls
- Limited on-the-job training
- Higher expectations
- Schedule Critical
- Cost Sensitive



### **Traditional Approach:**

- Building Envelope and MEP are unrelated
- Different Process
- Different Timelines
- Different Subcontractors
- Different Objectives
- Keep Separate

# **Synergistic Approach:**

- Building Envelope and MEP are VERY related
- ✓ Same Process
- ✓ Overlapping Timelines
- ✓ One Team, One Owner
- Same Objectives
- Integrate!

### **COMPLEX BUILDINGS REQUIRE A <u>TEAM</u> APPROACH**



### WHO SETS THE STANDARDS



Commissioning is REQUIRED by CODE !!

#### **IECC 2015**

Mechanical Systems Commissioning (C408.2) Service Water Heating Systems, Pools, Spas (C408.2) Lighting Controls Functional Testing (C408.3)

# IECC C402.5.1: AIR BARRIERS AND CONSTRUCTION (MANDATORY)

CZ 2B Exempt

Placement allowed:

- Inside of building envelope
- Outside of building envelope
- Located within assemblies composing envelope OR
- Any combination thereof

Continuous for all assemblies part of the thermal envelope and across joints and assemblies

| Three ways to comply<br>with air barrier<br>requirements | Requirement                   | Pressure<br>Differential Testing<br>Requirement | ASTM Standard                                        |
|----------------------------------------------------------|-------------------------------|-------------------------------------------------|------------------------------------------------------|
| 1. Materials                                             | Permeance ≤ 0.004             | 0.3 in w.g                                      | ASTM E 2178                                          |
| 2. Assemblies                                            | Air Leakage ≤ 0.04<br>cfm/ft² | 0.3 in w.g                                      | ASTM E 2357, 1677 or 283                             |
| 3. Building                                              | Air Leakage ≤ 0.40<br>cfm/ft² | 0.3 in w.g                                      | ASTM E779 or<br>equivalent method<br>approved by AHJ |
| Joints and seams to be sealed                            | per C402.4.2                  |                                                 |                                                      |

# **IECC AIR BARRIER COMPLIANCE**





#### Materials

- ASTM E2178
- 0.004 cfm/ft<sup>2</sup> (75 Pa)

#### Assemblies

- ASTM E2357
- 0.04 cfm/ft<sup>2</sup> (75 Pa)

Whole Building

- ASTM E779
- 0.40 cfm/ft<sup>2</sup> (75 Pa)

### **IECC C402.5.3: AIR LEAKAGE OF FENESTRATION (MANDATORY)**



| Fenestration Assembly                            | cfm/ft <sup>2</sup> | Test Procedure                          |  |  |
|--------------------------------------------------|---------------------|-----------------------------------------|--|--|
| Windows, sliding glass doors, and swinging doors | 0.20                | AAMA/WDMA/CSA<br>101/I.S.2/A440 or NFRC |  |  |
| Skylights - with condensation weepage openings   | 0.30                | 400                                     |  |  |
| Skylights – all other                            | 0.20                |                                         |  |  |
| Curtain walls and storefront glazing             | 0.06                | NFRC 400 or ASTM E283                   |  |  |
| Commercial glazed swinging entrance doors        | 1.00                | at 1.57 psi                             |  |  |
| Revolving doors                                  | 1.00                |                                         |  |  |
| Garage doors                                     | 0.4                 | ANSI/DASMA 105, NFRC                    |  |  |
| Rolling doors                                    | 1.00                | 400, 01 ASTM E203 at 1.57<br>psf        |  |  |

Exceptions:

- Field-fabricated fenestration assemblies
- Fenestration in buildings that meet the building test for air barrier compliance option

# LEED COMMISSIONING: LEED V4

EA PREREQUISITE: FUNDAMENTAL COMMISSIONING AND VERIFICATION

> Follow ASHRAE Guideline 0 and ASHRAE Guideline 1.1

**Cx Systems**: energy, water, indoor environmental quality, and durability

Envelope: BOD/OPR and document review only

Must engage CxA during DD phase

Prepare Facilities Requirements and Operations and Maintenance plan

#### EA CREDIT: ENHANCED COMMISSIONING

**Option 1, Path 1** (3 pts): *Traditional ECx*, plus:

Verify seasonal testing and Develop an ongoing commissioning plan

**Option 1, Path 2** (4 pts): *Enhanced and Monitoring-Based Commissioning* 

Achieve Path 1 and Monitoring-based M&V procedures to assess performance of energy & water systems

**Option 2** (2 pts): *Envelope Cx* 

### DO I HAVE A ROLE IN COMMISSIONING?



# 02 COMMISSIONING PROCESS



#### THE COMMISSIONING PROCESS IS THE COMMISSIONING PROCESS









# WHAT DOES THE CXA ACTUALLY DO?

#### **Design Phase**

- Set up for Success
- OPR Workshop
- Commissioning Specifications
- Evaluate the Design against OPR & BOD
- Lend our Expertise & Experience
- Develop the Cx Plan
  - Pre-Functional Checklists
  - Functional Performance
    Tests
- Hygrothermal and thermal analysis









| 0  | P1 :<br>V :<br>P2 : | PRES | SURE<br>CITY I<br>SSURE | IN P.S<br>N M.P.<br>IN H <sub>2</sub> | H.<br>D INC | HES  |
|----|---------------------|------|-------------------------|---------------------------------------|-------------|------|
| 2  | P1                  | V    | P2                      | P1                                    | V           | P2   |
| 1  | .01                 | 5    | .01                     | 31.0                                  | 110         | 5.96 |
| 5  | 0.3                 | 10   | .05                     | 32.5                                  | 112         | 6.25 |
| ۲  | 0.6                 | 15   | .11                     | 35.0                                  | 117         | 6.73 |
|    | 1.0                 | 20   | .20                     | 37.5                                  | 121         | 7.21 |
| Ċ, | 1.6                 | 25   | .31                     | 40.0                                  | 125         | 7.69 |
|    | 2.2                 | 30   | .44                     | 42.5                                  | 129         | 8.17 |
|    | 3.1                 | 35   | .60                     | 45.0                                  | 132         | 8.65 |
| 1  | 4.0                 | 40   | .79                     | 47.5                                  | 136         | 9.13 |
|    | 4.5                 | 42   | .86                     | 50.0                                  | 138         | 9.61 |
| 2  | 5.2                 | 45   | 1.00                    | 52.5                                  | 143         | 10.0 |
|    | 6.24                | 49   | 1.20                    | 55.0                                  | 146         | 10.5 |
|    | 6.4                 | 50   | 1.23                    | 57.5                                  | 150         | 11.0 |
|    | 7.7                 | 55   | 1.49                    | 60.0                                  | 153         | 11.5 |
|    | 8.0                 | 56   | 1.54                    | 62.5                                  | 156         | 12.0 |
| 1  | 9.2                 | 60   | 1.77                    | 65.0                                  | 159         | 12.5 |
|    | 10.0                | 63   | 1.92                    | 67.5                                  | 162         | 13.0 |
| 5  | 10.8                | 65   | 2.08                    | 70.0                                  | 165         | 13.5 |
|    | 12.0                | 68   | 2.31                    | 75.0                                  | 171         | 14.4 |
|    | 12.5                | 70   | 2.41                    | 80.0                                  | 176         | 15.3 |
| 1  | 14.4                | 75   | 2.76                    | 85.0                                  | 182         | 16.3 |
| 1  | 15.0                | 76   | 2.88                    | 90.0                                  | 187         | 17.3 |
| 1  | 16.4                | 80   | 3.15                    | 95.0                                  | 192         | 18.2 |
|    | 18.5                | 85   | 3.55                    | 100.0                                 | 198         | 19.2 |
|    | 20.0                | 88   | 3.84                    | 105.0                                 | 202         | 20.1 |
|    | 22.5                | 94   | 4.32                    | 110.0                                 | 207         | 21.1 |
| 1  | 25.0                | 99   | 4.80                    | 115.0                                 | 212         | 22.1 |
| 1  | 27.5                | 103  | 5.28                    | 120.0                                 | 216         | 23.0 |
| U  | 28.2                | 104  | 5.42                    | 125.0                                 | 220         | 24.0 |
| I  | 30.0                | 108  | 5.76                    | 130.0                                 | 225         | 25.0 |

#### **BECx DESIGN PHASE**

#### Control Layers

- Water
- Air
- Vapor
- Thermal



### **MEPCx DESIGN PHASE**



### MEPCx DESIGN PHASE Sequences of Operation

#### HVAC



#### Plumbing



### MEPCx DESIGN PHASE Sequences of Operation

#### Lighting Controls



#### **Emergency Power System**



# **CONVENTIONAL SPECIFICATIONS**

#### **BECx Specification**

SECTION 01 91 15

BUILDING ENCLOSURE COMMISSIONING REQUIREMENTS

#### PART 1 - GENERAL

- 1.1 SECTION INCLUDES
  - A. The work under this Section is subject to requirements of the Contract Documents, including the Owner's General Conditions and articles of the Construction Manager's General Conditions.
  - B. This section includes the commissioning requirements for the Building Enclosure systems. Refer to Section 019117 for Building Enclosure Functional Performance Testing.
    - The commissioning requirements for the Building Enclosure systems given in this section are entirely separate from, and in addition to, the General Commissioning Requirements for this project. The General Contractor (GC), Subcontractors, and Suppliers are required to participate in both commissioning processes as required and any supplemental General Commissioning requirements.

#### 1.2 DESCRIPTION

- A. Building Enclosure Commissioning (BECx) is a systematic process of ensuring all building enclosure systems responsible for environmental separation perform interactively according to the Owner's Project Requirements and the Architect's Basis of Design. The BECx process is intended to achieve the following specific objectives according to the Contract Documents:
  - Verify and document proper installation and performance of building enclosure materials and systems.
  - Provide Owner with functional building enclosure systems with minimal performance problems at project completion.
- B. Commissioning does not take away from, or reduce responsibility of, system designers or installing contractors to provide a finished and fully functioning product.
- C. This section shall in no way diminish the responsibility of the Division 03, 05, 07 and 08 Contractors, Sub-contractors and Suppliers in performing all aspects of work and festing as outlined in the Contract Documents. Any requirements outlined in this section are in addition to requirements outlined in Division 03, 05, 07, and 08.

#### **MEPCx Specification**

SECTION 01 91 13 GENERAL COMMISSIONING REQUIREMENTS

A PART 1 - GENERAL

- 1.1 SUMMARY
  - A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 01 Specification Sections, apply to this Section.
    - 1. Division 22 Plumbing
    - 2. Division 23 Mechanical
    - 3. Division 26 Electrical
  - B. It is of primary concern that all systems and assemblies in the project perform in accordance with the design intent and the Owner's operational needs. The process of assuring that such performance is achieved is referred to as "commissioning."
  - C. The Commissioning Team will include representatives of the Owner, Design A/E, General Contractor and Installing Subcontractors, Test and Balance Subcontractor, BAS Subcontractor and Commissioning Authority (CxA), (a.k.a., the commissioning professional (CxP))
  - D. Commissioning is a comprehensive and systematic process of verifying that the building systems perform interactively in accordance with the BOD, according to the construction documents (and the owner's project requirements documents and architectural program to the extent those were generated for this project).
    - The commissioning process shall encompass and coordinate the equipment and system documentation, equipment start up, field testing, control system calibration, testing and balancing, functional performance testing and training. Commissioning requires cooperation and direct involvement by all parties throughout the construction process.
    - In addition to fulfilling scheduling and planning requirements, the Contractor is further responsible for documenting the equipment and system installation and operational verification for all systems and assemblies.
  - E. Commissioning Process Overview: The following narrative provides a brief overview of the typical commissioning tasks during construction and the general order in which they occur.

#### **SYNGERGIES - SPECIFICATIONS**

1.1

Α.

1.

2.

3.

4.

5.

#### **Combined Front End Specification**

SECTION 019113 GENERAL COMMISSIONING REQUIREMENTS PART 1 - GENERAL SUMMARY and DESCRIPTION OF WORK INCLUDED The University of Florida's use of commissioning recognizes the integrated nature of building systems and the importance of waterproof building envelope in loday's complex facilities. The performance of these systems impacts operating cost, efficiency, and sustainability, indoor air quality, comfort and productivity in the workplace or classroom/lab, and security. The goal of commissioning is to help deliver facilities that meet or exceed expectations for these factors. Strategies include periodic direct observation of envelope system construction and operation of dynamic building systems through their full range of intended and failure-mode operation. The specific new building systems and equipment to be commissioned on this project are as follows (note that existing equipment and existing building systems are not part of the commissioning scope unless otherwise indicated) : BUILDING ENVELOPE (including masonry, curtainwall/storefront and glazing, exterior walls & cladding, flashings & sealants, exterior drainage systems, and roofing) PLUMBING (including domestic water, hot water, and booster pumps) HVAC (including building entrance of distributed utilities, air handling units, terminal devices, general and hazardous exhaust systems, return air system, chillers, pumps, VFDs, cooling towers, boilers, heat exchangers, associated or supporting equipment, and TAB) ELECTRICAL (including motors, grounding, lightling and daylightling controls, switchboards, distribution panels >800 amps, emergency power supply system) Low Voltage (including DDC Building Automation System, security and access control, audio/visual)

RELATED SECTIONS and DOCUMENTS

Α. Documents affecting the work of this Section include other elements of the Contract for Construction. including the Owner/Builder Agreement or Owner/Design-Builder Agreement, the General Terms & Conditions, other sections of the Division 0 and Division 1 non-technical specifications, and the following technical plans and specifications:



## **SYNGERGIES – DESIGN REVIEW**

# Share our Expertise & Experience

- Common Timeframe
- Coordinated Comments
- Design Review Meetings
- Tracking on Common Platform

| Number      | Description                                 | Status | Priority | Asset    | Assign |
|-------------|---------------------------------------------|--------|----------|----------|--------|
|             | and copper is not intended to               |        |          |          |        |
|             | maintain historic look.                     |        |          |          |        |
| DR-6 198    | Rod deck is unknown. Thickness of           | CLOSED |          | Historic |        |
|             | insulation at stated R value is thick (5    |        |          | Norman   |        |
|             | inches). Use of fasteners as shown          |        |          |          |        |
|             | way be challenging and expensive            |        |          |          |        |
|             | Recommend adhering all layers if            |        |          |          |        |
|             | conorde-dock and fasterring only the        |        |          |          |        |
|             | first layer of insulation if metal deck.    |        |          |          |        |
| DR-6-199    | Snow fence raits shown.                     | CLOSED |          | Historic |        |
|             | Confirm that intend is for failing definits |        |          | Norman   |        |
|             | protection and that this protection         |        |          |          |        |
|             | outweights the potential for water          |        |          |          |        |
|             | intrusion due to fasteners.                 |        |          |          |        |
| 09.4.200    | Fiber cant shown. UF Standards cell         | 010010 |          | inatoric |        |
|             | for pressure treated.                       |        |          | Norman   |        |
|             | Confirm if acceptable to UF.                |        |          |          |        |
| 08.4-201    | Detailing of membrane to post not           | CLOSED |          | Haloric  |        |
|             | dear                                        |        |          | Norman   |        |
|             | Consider adding additional detailing        |        |          |          |        |
|             | showing flasing of post to membrane.        |        |          |          |        |
|             | Also, recommend sealant at deck to          |        |          |          |        |
|             | poet transition for air Sghtheas.           |        |          |          |        |
| DR-4-202    | Neopnene misspelled                         | CLOSED |          | Historic |        |
|             |                                             |        |          | Norman   |        |
|             | Correct spelling                            |        |          |          |        |
| 08.4.203    | Exposed steel appears present at            | CLOSED |          | Historie |        |
|             | roof edge.                                  |        |          | Norman   |        |
|             | Recommend revising detailing to             |        |          |          |        |
|             | avoid exposed steel                         |        |          |          |        |
| 08.4.204    | Cart shown at roofwall transition,          | CLOSED |          | Haloni   |        |
|             | even though liquid applied roofing          |        |          | Norman   |        |
|             | based                                       |        |          |          |        |
|             | Recommend removing carit                    |        |          |          |        |
| 084205      | Sealant bead location not shown on          | 0.000  |          | Historic |        |
|             | detail                                      |        |          | Norman   |        |
|             |                                             |        |          |          |        |
| Cenigr Ineu | en   Printed on ES1102015   Page 12 of 5    |        |          |          |        |

| lumber  | Description                                                                                                                                                                                                                                     | Status           | Priority     | Asset              | Renigned. | Due Dete |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------|--------------------|-----------|----------|
|         | well, however there are CO2 and<br>humidity sensors shown.                                                                                                                                                                                      |                  |              |                    |           |          |
| DR-471  | Recommend to provide isolation<br>values at the wall near the riter take<br>of to isolate branch supplies and<br>returns especially where those<br>branches are serving multiple units.                                                         | (1000)<br>(1000) | ACCESSION TO | Hatoric<br>Norman  |           |          |
| DR-4-73 | There is a 5 th pipe on the headers<br>supplying PCUs 2.3 to PCU 2.8<br>beginning at PCU 2.5. What is 8.7 it<br>is not labeled or sized.                                                                                                        | (LOSE)           | MODEPLATE    | Historic<br>Norman |           |          |
| 084 N   | There is a line partially drawn to the<br>north of FOUE3 and a pipe rising<br>from FOU 23 & FOU 2.4 not<br>connected to anything                                                                                                                | (1091)           | MODERATE     | Historii<br>Norman |           |          |
| 08.4.75 | Show service Access space<br>requirements for ArtU 1                                                                                                                                                                                            | CLOSED           | MODERATE     | AHQ-1              |           |          |
| 08.4.80 | Show service Access space<br>requirements for DOAS 1.6.2. Shade<br>or helds the service access where<br>not done.                                                                                                                               | (20060)          | MOREMATE     | Abi                |           |          |
| DR-4-81 | Where tranches T provide toolation<br>value one either side of the T split<br>and at the riser takeoffs.                                                                                                                                        | ELOSED           | 100          | Atte               |           |          |
| DR-4-82 | Pipes for DOAS are dropping too<br>close to the ANU to be piped and thed<br>drop will interfere with the VFD<br>bennoe access when piped as shown,<br>especially when those pipes are<br>between the closest wall and the unit<br>as for DOAS 2 | (CECONER)        |              | Atte               |           |          |
| DR-443  | This diagram is good but would be<br>befor with an flows indicated its<br>evaluate building pressurization                                                                                                                                      | (ci osito)       |              | Historic<br>Norman |           | 4272018  |
| DR-4-84 | Iso valves for CHMS/R (M802) and<br>MMS/R (M802) vale as needed on<br>the plans for branch line isolations off<br>the risers are shown on these sheets.                                                                                         | (CIONIC)         | LOCETUTE     | Historic<br>Norman |           |          |
| DR-4-85 | No HW or Steam metering indicated<br>as was provided on the CHW and<br>required to UFL PDC standards                                                                                                                                            | CLOSED           | MOCHENNES!   | Historic<br>Norman |           |          |

### SYNERGIES – CX PLAN

#### **One Plan vs Two Plans**



| UF-22TA NORMAN HALL REHABILITATION       | JF FLORI |
|------------------------------------------|----------|
| TABLE OF CONTENTS                        |          |
| 1 Overview                               |          |
| 1.1 Purpose of the Commissioning Plan    |          |
| 1.2 Commissioning Scope                  |          |
| 1.3 Systems to be Commissioned           |          |
| 1.3.1 Building Envelope                  |          |
| 1.3.2 Mechanical Equipment and Systems:  |          |
| 1.3.3 Plumbing Systems                   |          |
| 1.3.4 Electrical Systems                 |          |
| 2 Project Description                    |          |
| 2.1 Mechanical Systems                   |          |
| 2.1.1 Cooling                            |          |
| 2.1.2 Heating                            |          |
| 2.1.3 Supply / Return / Exhaust          |          |
| 2.2 Electrical Systems                   |          |
| 2.2.1 Lighting & Lighting Controls       |          |
| 2.2.2 Electrical Distribution            |          |
| 2.3 Plumbing Systems                     |          |
| 2.3.1 Domestic Hot Water                 |          |
| 3 Commissioning Team                     |          |
| 3.1 Team Members.                        |          |
| 4 Roles and Responsibilities             |          |
| 4.1 Team Members                         |          |
| 4.2 General Management Plan              |          |
| 4.3 Responsibilities                     |          |
| 5 Commissioning Process                  |          |
| 5.1 Design Phase                         |          |
| 5.1.1 Owner's Project Requirements (OPR) |          |
| 5.1.2 Basis of Design (BOD).             |          |
| 5.1.3 Commissioning Specifications       |          |
| 5.1.4 Design reviews                     |          |
| 5.1.5 Commissioning Plan                 |          |
| 5.2 Construction Phase                   |          |
| 5.2.1 Cx Kickoff Meeting                 |          |
| 5.2.2 Submittal Review                   |          |
| 5.2.3 Final Commissioning Plan           |          |

# 04

# **CONSTRUCTION PHASE**




# WHAT DOES THE CXA ACTUALLY <u>DO</u>?

- Construction Phase
  - Kickoff Meeting
  - Submittal Review
  - Update Cx Plan
  - Site Observation
  - Issue Tracking
  - Start-Up Testing
  - Envelope Testing

# SYNERGIES – CX KICK OFF AND OTHER MEETINGS

#### **Construction Phase**

#### **Kickoff Meeting**

- Prepare an Agenda
- Entire Team Attends
- Review Goals
- Site Review Process
- Set Roles &
   Responsibilities
- Discuss Schedule
- Discuss Start-Up & Functional Testing



#### **Cx Meetings**

- Prepare an Agenda
- Review Issues / Resolution Log
- Discuss Progress & Updates
- Document Revisions
- Review Schedule & Key Dates

## **SYNERGIES - CONSTRUCTION OBSERVATION**



### **SYNERGIES – ISSUE TRACKING**

#### Issue Communication, Tracking, and Resolution



Performance Mockups



## **Building Enclosure**

| enterpointe 0                                                                                                                                                                          | 1/14/2015             | Log 337 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------|
| Extenior Doors Flieshing                                                                                                                                                               |                       |         |
| <ol> <li>Self-adhered membrane installed at door<br/>jumbs.</li> </ol>                                                                                                                 | Checked               |         |
| <ol> <li>Door Pau flochings folyicated with a 1/2"<br/>restined data.</li> </ol>                                                                                                       | Checked               |         |
| <ol> <li>Door pen flackings installed tightly interest<br/>specing.</li> </ol>                                                                                                         | <sup>(5)</sup> N3.    |         |
| <ol> <li>Door threshold substrate slope instead pri-<br/>to pan installation.</li> </ol>                                                                                               | * Nik                 |         |
| 3. All threesers think                                                                                                                                                                 | Checked               |         |
| 6 Door beck dame are protected.                                                                                                                                                        | Checkel               |         |
| Windows Flashing                                                                                                                                                                       |                       |         |
| 1. Rough opening clean and framing ready for<br>fexable finding application.                                                                                                           | 2638                  |         |
| 2. All thereases use fluids.                                                                                                                                                           | Classified            |         |
| ). Self adhered membrane primer installed.                                                                                                                                             | NR                    |         |
| 4. Self-adhered membrane thingled where<br>required.                                                                                                                                   | Checked               |         |
| <ol> <li>Self-adhered membrane themistic flashing in<br/>processed.</li> </ol>                                                                                                         | <sup>pt</sup> Checked |         |
| 6. Self-adlered membrane paper backing<br>senared where required.                                                                                                                      | Checked               |         |
| Exterior Door Installation                                                                                                                                                             |                       |         |
| 2. Review Gendlie Gailing at 2-Hour ferwoll<br>conditions.                                                                                                                             | NOL                   |         |
| <ol> <li>If derivall is required for fire, Gendule Sada<br/>is to be installed over the drywall.</li> </ol>                                                                            | M NOL                 |         |
| <ol> <li>If the issuit is metal, 3-model is required along<br/>the issuits and a min, of 1147 between the door<br/>trim and 3-model is required to allow for becket<br/>and</li> </ol> | NA                    |         |
| 4. Head finding installed over the door<br>jush flexible finding wapping into opening.                                                                                                 | NOL                   |         |
| 5. Door jambs notched around the back jamb.                                                                                                                                            | N(8,                  |         |
| Window Installation                                                                                                                                                                    |                       |         |
| I. Renew sealant type used at familie families                                                                                                                                         | p. Claskel            |         |
| 2 Window installed with scalast soring itom.                                                                                                                                           | for Checked           |         |



#### **Protect the Design**





MEP























## 05 ACCEPTANCE / FUNCTIONAL PERFORMANCE VERIFICATION



# WHAT DOES THE CXA ACTUALLY DO?

#### Acceptance Testing

aka Functional Performance Testing:

making sure the systems can do what the Construction Documents say they're supposed to do.

#### **OVERSEE PERFORMANCE TESTING – ASTM E779**



## ASTM E1186 (4.2.6) "SMOKE TRACER"







### **ASTM D4541 ADHESION TESTING**



#### **OVERSEE PERFORMANCE TESTING – AAMA 501.2**





### **OVERSEE PERFORMANCE TESTING – ASTM E1105**



#### **OVERSEE PERFORMANCE TESTING – AAMA 501.1**





#### **OVERSEE PERFORMANCE TESTING – ASTM D7877**



## **OVERSEE ROOF TESTING**





### **OVERSEE ROOF TESTING**



#### **OVERSEE ROOF TESTING**



## **DUCT / PIPE PRESSURE TESTING**







# WHAT DOES THE CXA ACTUALLY DO?

#### • Post Occupancy

- Deferred Testing
- Scheduled site visits
- Warranty & Close-Out Items
- Owner conference
- Develop Ongoing Cx Plans
- Final Cx Report

#### SYNERGIES – CX REPORT One Reports vs Two Reports





Jacksonville, FL 32207

By: Robert M. 'Mac' Coble, II, P.E., ACG CxA Cettilication No. 1006-159 SMA LEED AP and FOR ARCHITECTURE EMA. LEED AP 80+C

| UF400 Cypress Hall<br>Residence Hall |  |
|--------------------------------------|--|
| TLC Project #813081                  |  |
|                                      |  |
|                                      |  |
|                                      |  |



TABLE OF CONTENTS

| 1 | Exe  | cutive Summary                                                      |  |  |
|---|------|---------------------------------------------------------------------|--|--|
| 2 | Abb  | reviations and Nomenclature                                         |  |  |
| 3 | Proj | Project Systems Description                                         |  |  |
| 4 | Proj | Project Narrative                                                   |  |  |
|   | 4.1  | Commissioning Scope                                                 |  |  |
|   | 4.1. | 1 Envelope Systems Scope                                            |  |  |
|   | 4.1. | 2 Building Envelope Commissioning                                   |  |  |
|   | 4.1. | 3 Building Systems Commissioning Scope                              |  |  |
| 5 | Con  | nmissioning10                                                       |  |  |
|   | 5.1  | Pre-Design Phase                                                    |  |  |
|   | 5.2  | Design Phase                                                        |  |  |
|   | 5.3  | .3 Construction Phase                                               |  |  |
|   | 5.4  | Acceptance Phase – Building Envelope13                              |  |  |
|   | 5.5  | Acceptance Phase - Mechanical, Electrical, and Plumbing Systems14   |  |  |
|   | 5.6  | Post-Occupancy Phase - Mechanical, Electrical, and Plumbing Systems |  |  |
| 6 | Mea  | asurement and Verification                                          |  |  |

Appendices - Commissioning Process Activities Documents

| Appendix A | Commissioning Services Agreement – Authorization                          |
|------------|---------------------------------------------------------------------------|
| Appendix B | Owner Project Requirements & Basis of Design                              |
| Appendix C | Commissioning Plan (CxP)                                                  |
| Appendix D | Design plans (A reduced copy of the MEP plans) & Design Review Comments   |
| Appendix E | ALC Building Automation System (BAS) submittal.                           |
| Appendix F | Equipment start up verification checks/ pre-functional testing            |
| Appendix G | Functional Performance Tests                                              |
| Appendix H | Test and Balance Report & Building Envelope Tests                         |
| Appendix I | Other project miscellaneous documents (Meeting Agenda & Minutes, Reports) |
| Appendix J | BE Cx Issues Log and Systems Cx Issue Log                                 |
| Appendix K | Training Documentation                                                    |



Final Commissioning Report - March 5, 2018

Page 2


# LEAKY BUILDINGS SUCK



#### **KITCHEN HOODS**



#### **NEGATIVE PRESSURE**



# **VAPOR DRIVE**



### WATER DAMAGE



# IN SUMMARY....

- Integrated MEPCx + BECx:
  - High Performance Buildings must address BE and MEP
  - Better Execution of Project Goals
  - Cx Process & Timelines
  - Streamlined Documentation & Meetings
  - Save Owner & Team Time and Money



# **Thank You!**

**Darek Brandt, PE Senior Associate** Walter P. Moore

Mark Gelfo, PE, CxA, LEED Fellow, EMP Managing Principal, Energy Services **TLC Engineering Solutions** 



407-418-2218



www.walterpmoore.com

904-306-9111



mark.gelfo@tlc-eng.com

www.tlc-engineers.com